A comprehensive model of material removal mechanism (in lapping process) by single-grain scratch test

Praveen Sridhar, Driss Fares, Kristin de Payrebrune
Institute of Applied Structural Mechanics (asm)

- Lapping process characteristics
- Damage and FE material removal model
- Parameter study and results
- Conclusion
- Further steps
Lapping process characteristics

Basic models and coupling

- Damage and FE material removal model
- Operation parameter
- Structural parameters
- DEM grit kinematics model
- CFD lapping fluid model

Coupling relationships between the models.
Lapping process characteristics

Kinematics of grits
Lapping process characteristics

FE model of a single grit indentation

Important structural parameters
- grit geometry
- number of cutting edges
- material properties (ductile or brittle)

Important operational parameters
- sliding velocity
- applied force/depths of cut

Resulting parameters
- material removal
- surface roughness
- stress distribution
FEM Simulation - Framework

Workpiece-cutting tool model and boundary conditions

Tool material: rigid body (E = 2×10^5 MPa, ρ = 2800 kg/m³)
Workpiece material: aluminium alloy (A2024-T351; E = 71×10^3 MPa, ρ = 2700 kg/m³)

Tool Speed: 10 m/s

Simulations performed:
- Effect of tool geometries: Tool wedge angle β (10°-160° in steps of 30°)
- Effect of depth of cut (d_c): 0.25, 0.5, 0.75, 1, 1.25 mm.
Damage and FE material removal model

Johnson-Cooke Material Model

• Widely used in material flow stress model in metal machining simulations.

\[
\sigma = \left[A + B(\varepsilon)^n \right] \left[1 + C \ln \left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_0} \right) \right] \left[1 - \left(\frac{T - T_{room}}{T_{mel} - T_{room}} \right)^m \right]
\]

Where,
- \(f_1 \) - components describing strain hardening behaviour
- \(f_2 \) - components describing strain rate sensitivity behaviour
- \(f_3 \) - components describing thermal softening behaviour of the metal

• The effective von Mises stress \((\sigma_f) \) is calculated as a compound of the above three components.

Damage and FE material removal model

Johnson-Cooke Failure Model

- The JC failure model is used in conjunction with the JC material model
- This model is suitable for high strain rate deformations such as high speed machining.
- The effective fracture strain $\bar{\varepsilon}^f$ is described by the following equation:

$$\bar{\varepsilon}^f = \left[D_1 + D_2 \left(\frac{D_3 \sigma_m}{\bar{\sigma}} \right) \right] \left[1 + D_4 \ln \frac{\dot{\varepsilon}}{\dot{\varepsilon}_0} \right] \left[1 - D_5 \left(\frac{T - T_{room}}{T_{melt} - T_{room}} \right)^m \right]$$

- The damage parameters for aluminum alloy (A2024-T351):

<table>
<thead>
<tr>
<th>D_1</th>
<th>D_2</th>
<th>D_3</th>
<th>D_4</th>
<th>D_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>0.13</td>
<td>-1.5</td>
<td>0.01</td>
<td>0</td>
</tr>
</tbody>
</table>

Damage and FE material removal model

Damage initiation and damage evolution for alloy (A2024-T351)

- Stress-strain behaviour of a material undergoing damage according to Hillerborg fracture energy model

Criterion for damage initiation

\[w = \sum \frac{\Delta \bar{\varepsilon}}{\bar{\varepsilon} - f} \]

Expression for the damage parameter

\[D = \frac{L\bar{\varepsilon}^{pl}_{f}}{\bar{u}_{f}^{pl}} = \frac{\bar{u}^{pl}}{\bar{u}_{f}^{pl}} \]

Stress after damage initiation

\[\sigma = (1 - D)\bar{\sigma} \]

Parameter study and results

Impact of grain geometry

- von Mises stress contours for tool wedge angle β (10°-160° in steps of 30°)
Parameter study and results

Impact of depth of cut

- von Mises stress contours for varying depths of cut (d_c)
Parameter study and results

Impact Mean-stress vs Tool angle/ Depth of cut (d_c)

Tool angle

Depth of cut

Impact Mean-stress vs Tool angle/ Depth of cut (d_c)
Conclusion

- The physical force model was developed to simulate the material removal mechanisms for a single grain scratch test.
- The Johnson-Cooke material and damage model was used to simulate the damage mechanisms.
- Two sets of simulations were conducted:
 1. Changing the tool wedge angle β (10°-160° in steps of 30°).
 2. Changing the depths of cut 0.25, 0.5, 0.75, 1, 1.25 mm.
- From the results it is clear that stresses increase with increase in the tool wedge angle as well as with increase in the depths of cut.
- Steep increase in the normal stresses with increase in tool wedge angle β.
- Higher tangential stresses compared to normal stresses with increase in the depths of cut (d_c).
Further Steps

• The representative material damage model is developed for single grit scratch tests, the model will be further developed for materials to be tested and validated in a laboratory environment

• Further improvements in the Johnson-Cooke model by using modified Johnson-Cooke models best suitable for the materials used in the experiments.

• Development of material damage model to simulate damage mechanisms in brittle materials

• Coupling of grit kinematics simulation (DEM) and fluid mechanic simulation (CFD) with the FEM simulation for overall understanding of the material removal mechanisms in the lapping process.

ACKNOWLEDGEMENT
We appreciate the funding of this work within the Collaborative Research Centre 926 “Microscale Morphology of Component Surfaces” and the International Research Training Group IRTG 2057 "Physical Modeling for Virtual Manufacturing Systems and Processes“ by the German Research Foundation (DFG)