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Two Equations of Motion in Continuous and in Discrete Form

In analytical mechanics, the analysis of energy has put forth two different kinds of equations of motion, being solved in different phase spaces. Let be a configuration manifold, then a
LAGRANGIAN maps the tangent bundle to the real line. A variational principle leads to the well known Euler-Lagrange equations. A HAMILTONIAN on the
cotangent bundle is obtained from via the Legendre transformation and (if this transformation is invertible) Hamilton’s equations are equivalent to the Euler-Lagrange equations.

Euler-Lagrange equations: Hamilton’s equations:

Adept ways of discretizing these equations for algorithmic time-stepping inherit different conservation properties from the solutions of the underlying continuous system. A symplectic-
momentum integrator is derived from a discrete variational principle, whereas discretizing Hamilton’s equations by using discrete derivatives (introduced by O. Gonzalez) gives rise to an
energy-momentum scheme.

Discrete Euler-Lagrange Equations: Discrete Hamilton’s equations:

Example of a Constrained Mechanical System: The Double Spherical Pendulum

The motion of the double spherical pendulum is constrained by the constant length of the rods, which can be expressed by the condition . Alternative ways to treat these holonomic
constraints are represented either by adding different scalar valued functions to the usual Lagrangian and Hamiltonian (being
composed of kinetic energy or and potential energy ), respectively, or by coordinate transformation.

Lagrange Multipliers
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Approximation of the motion of the pendulum, starting
at a horizontal initial position (black), by a symplectic-
momentum integrator and treating the constraints by
means of Lagrange Multipliers requires the addition
of to the LAGRANGIAN. In the
symplectic-momentum scheme the total energy is not con-
served, but the amplitude of the fluctuations decreases as
the time step decreases. The constraints are fulfilled ex-
actly.
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Generalized Coordinates
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The reduction of the number of degrees of freedom
by the constraints can be seen explicitely in the use
of 2 spherical coordinates instead of 3 cartesian coor-
dinates for the position of each mass. The system
to be solved consists of less but more complicated
equations including the transformation and
its derivatives. The conservation of the component of
the angular momentum belonging to the gravitational
axis along the motion calculated by the symplectic-
momentum scheme is illustrated in the diagramm.
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Penalty Potential
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The constraint in the first rod is replaced by a spring
with stiffness , introducing the penalty potential

. In the picture above, the variation
in the length of the first rod during the motion of the
pendulum can be seen for a spring of stiffness .
The decrease in the error of the position constraints, as
the spring stiffness increases, is depicted below for the
energy-momentum scheme for a time step
seconds.
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