Discrete null space method

Simulation algorithms are required to be efficient and robusle yielding accurate solutions that share the releyaoperties of the continuous dynamical system, e.g. enangymomentum conservation and symplecticity. An elegaryt
to deduce such time stepping schemes is to parallel thencants theory. The discrete null space method for the intiegraf constrained dynamical systemsg(BCH, LEYENDECKER) is based on this idea. To circumvent the presence
highly nonlinear transformations between the redundaatdinatesg € R (subject to holonomic constrainigg) € R™) and the independent generalised coordinates R"~™ of the constraint manifold during time discretisation, a systen .
of differential-algebraic equations (DAEs) is discretisa time. However, the resulting time-stepping schemesaheedatively large dimension (it has to be solved for redudaordinates plus Lagrange multipliers) and it may sufifem EXtenS|0nS
conditioning problems. Both drawbacks are eliminated leyatplication of the discrete null space method. Its maireidignts are a discrete null space matrix and a reparaatéiriof the discrete configuration variable in independecremental
unknowns. After the discretisation of the DAEs has been deteg, a size-reduction of the discrete system is perforbyeeliminating the constraint forces and introducing a repeetrisation of the discrete configuration variable. kwake of
the size-reduction, potential conditioning problems direirated, increasing the robustness of the simulatiore fEsulting time stepping scheme has the minimal possibiemion what benefits the simulations efficiency.
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