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Discrete null space method
Simulation algorithms are required to be efficient and robust while yielding accurate solutions that share the relevantproperties of the continuous dynamical system, e.g. energyand momentum conservation and symplecticity. An elegant way

to deduce such time stepping schemes is to parallel the continuous theory. The discrete null space method for the integration of constrained dynamical systems (BETSCH, LEYENDECKER) is based on this idea. To circumvent the presence of

highly nonlinear transformations between the redundant coordinatesq ∈ R
n (subject to holonomic constraintsg(q) ∈ R

m) and the independent generalised coordinatesu ∈ R
n−m of the constraint manifoldC during time discretisation, a system

of differential-algebraic equations (DAEs) is discretised in time. However, the resulting time-stepping schemes hasa relatively large dimension (it has to be solved for redundant coordinates plus Lagrange multipliers) and it may sufferfrom

conditioning problems. Both drawbacks are eliminated by the application of the discrete null space method. Its main ingredients are a discrete null space matrix and a reparametrisation of the discrete configuration variable in independentincremental

unknowns. After the discretisation of the DAEs has been completed, a size-reduction of the discrete system is performedby eliminating the constraint forces and introducing a reparametrisation of the discrete configuration variable. In the wake of

the size-reduction, potential conditioning problems are eliminated, increasing the robustness of the simulation. The resulting time stepping scheme has the minimal possible dimension what benefits the simulations efficiency.

differential-algebraic equations of motion energy-momen tum scheme symplectic-momentum scheme

M · q̈ + ∇V (q) + GT (q) · λ = 0

g(q) = 0

⊙ G(q) = Dg(q) constraint Jacobian

⊕ constantmass matrixM

⊖ n + m -dimensional system of index three

M · [vn+1 − vn] + ∆tDV (qn, qn+1) + ∆tGT (qn, qn+1) · λn+1 = 0

g(qn+1) = 0

⊙ G(qn, qn+1) = Dg(qn, qn+1) discrete derivative (GONZALEZ)

⊖ n + m -dimensional system

⊖ condition number of iteration matrix isO(1/∆t3)

D1Ld(qn, qn+1) + D2Ld(qn−1, qn) + GT (qn) · λn+1 = 0

g(qn+1) = 0

⊙ discrete LagrangianLd

⊖ n + m -dimensional system

⊖ condition number of iteration matrix isO(1/∆t3)

null space matrix

range(P (q)) = null (G(q))

discrete null space matrix

range
(

P(qn, qn+1)
)

= null
(

G(qn, qn+1)
)

discrete null space matrix

range(P (qn)) = null (G(qn))

reparametrisation

q = F (u) ∈ C P (q) = DF (u)

discrete reparametrisation

qn+1 = F n+1(u) ∈ C

discrete reparametrisation

qn+1 = F n+1(u) ∈ C

reduced equations of motion

DF T (u) ·

[

M ·
d

dt
(DF (u) · u̇) + ∇V (q)

]

= 0

⊕ n − m -dimensional system of second order ODEs

⊖ F not always feasible

⊖ system ishighly nonlinear

reduced em-scheme

P
T (qn,F n+1(u)) · [M · [vn+1 − vn] + ∆tDV (qn,F n+1(u))] = 0

⊕ n − m -dimensional system

⊕ condition number of iteration matrix is independent of∆t

⊖ P
T (qn, qn+1) depends onqn+1

reduced sm-scheme

P T (qn) ·
[

D1Ld(qn,F n+1(u)) + D2Ld(qn−1, qn)
]

= 0

⊕ n − m -dimensional system

⊕ condition number of iteration matrix is independent of∆t

⊕ P T (qn) is independent ofqn+1

Multibody system dynamics
six-body linkage: six rigid tetrahedra coupled by revolute joints,1 degree of freedom elastic slider-crank mechanism: two elastic beams (rigidly connected) and two rigid bodies (connected to beams by spherical joints),214 degree of freedom
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energy-momentum symplectic-momentum

constrained reduced reduced

number of unknowns 143 1 1

n = 72 m = 71

CPU-time 1 1
1

2

condition number

∆t = 10−2 105 1 1

∆t = 10−3 108 1 1

∆t = 10−4 1011 1 1
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energy-momentum symplectic-momentum

constrained reduced reduced

number of unknowns 722 214 214

n = 468 m = 254

CPU-time 2.3 1
1

2

condition number

∆t = 10−2 1010 104 104

∆t = 10−3 1011 103 103

∆t = 10−4 1014 103 103

Extensions

⊙ symplectic-energy-
momentum scheme

⊙ optimisation and
control theory (DMOC)

⊙ hierachical approach to
large systems

⊙ separation of fast and
slow changing degrees
of freedom
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