optimal control of constrained multibody dynamics

rigid body kinematics

• internal constraints: orthonormal director triad

$$g_i(\mathbf{q}) = \mathbf{d}_j^T \cdot \mathbf{d}_k - \delta_{jk} = 0$$
 $j, k = 1, 2, 3$ $i = 1, \dots, m_{int}$

 directors allow straightforward formulation of external constraints: joints in multibody systems

holonomic constraints

 $\mathbf{g}(\mathbf{q}) \in \mathbb{R}^m$

 $m = m_{int} + m_{ext}$

variational discrete null space method

- \oplus easy formulation of discrete Lagrangian $L_d(\mathbf{q}_n, \mathbf{q}_{n+1})$ with constant mass matrix
- discrete nodal reparametrisation $\mathbf{q}_n = \mathbf{F}(\mathbf{u}_n, \mathbf{q}_{n-1})$ such that constraints are fulfilled
- discrete variational principle leads to

$$\left(\frac{\partial \mathbf{F}}{\partial \mathbf{u}_n}\right)^T \cdot \left[D_1 L_d(\mathbf{q}_n, \mathbf{q}_{n+1}) + D_2 L_d(\mathbf{q}_{n-1}, \mathbf{q}_n)\right] = \mathbf{0}$$

to be solved for discrete generalised configuration \mathbf{u}_{n+1}

- symplectic-momentum conservation
- exact constraint fulfilment
- minimal dimension of system: n-m
- conditioning of iteration matrix is independent of Δt

unlike

- Lagrange multiplier method
 - maximal dimension of system: n + m
- conditioning of iteration matrix is $\mathcal{O}(1/\Delta t^3)$
- generalised coordinates
- complicated Lagrangian, higher nonlinearity
- difficult for multibody systems

Michael Ortiz Jerrold E. Marsden

discrete mechanics and optimal control

• discrete control forces $\mathbf{f}_{n-1}^{+}\left(au_{n-1}
ight) \quad \mathbf{f}_{n}^{-}\left(au_{n}
ight)$

Sigrid Leyendecker ·

discrete generalised force τ

Sina Ober-Blöbaum

minimise control effort

$$J_d = \Delta t \sum_{n=0}^{N-1} ||\tau_n||$$

wrt minimal possible number of unknowns $\{\tau_n\}_{n=0}^{N-1}$ subject to

- prescribed initial and final state and
- forced time stepping equations

$$\left(\frac{\partial \mathbf{F}}{\partial \mathbf{u}_n}\right)^T \cdot \left[D_1 L_d(\mathbf{q}_n, \mathbf{q}_{n+1}) + D_2 L_d(\mathbf{q}_{n-1}, \mathbf{q}_n) + \mathbf{f}_{n-1}^+ + \mathbf{f}_n^-\right] = \mathbf{0}$$

- ⇒ optimal trajectory is consistent with dynamics change in angular momentum exactly reflects applied torque
- manoever starts and ends at rest

• angular momentum is zero due to geometric phase

physically consistent reorientation of 'satellite' with minimal control effort

