
  

Discrete Variational Mechanics for Elastic Rods

concepts and techniques
● discrete mechanics approach: switch to discrete setting at 

the earliest possible stage
● replace derivatives by finite differences
● apply the discrete null space method with nodal 

reparametrization

our rod model ...
● is not meant to replace more accurate FE models - but...
● displays all features of the continuum model 

qualitatively
● shows good accuracy with respect to the approximation 

of forces and moments
● computes fast and efficiently

results
● nodal reparametrization allows to omit constraint 

function g
→ solve a system of minimum dimension

● fast computational performance
● exact fulfillment of constraints
● exact conservation of discrete momentum maps

    (up to rootfinder precision)
● Kirchhof rod theory can easily be recovered by imposing 

additional constraints
● 'variational cable solver' is able to solve generalized 

boundary value problems (full clamping, free end, 
moment free and combinations thereof)
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● equilibrium equations
(spatial description)

theory of special Cosserat rods

● idea:  rod problem (elastostatics) corresponds to a 
Lagrangian system on ℝ3×SO 3

W discrete = ∑
i=1

N−1

W iqi , qi1

∥ni∥

● deformed configuration

derive equilibrium equations 
from variational principle, 
handling the SO(3)- 
constraints with the null space 
method

 ∫0
L

w d s  = 0

same concept as in 
variational integrator theory: 
construct numerical scheme 

from discrete variational 
principle

W elastic = ∫
0

L

w u  s , v sd s
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m⋅n = m⋅n = const.
mr×n = const.
n = const.

m⋅d 3 = m⋅e3 = const. (isotropic case)

● momentum maps of frame-indifferent rods
(conserved quantities in space)
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● strain vectors

 shear, dilatation ↑  flexure ↑  ↑  twist ↑ 

material description : u=u1e1u2e2u3,e3 spatial description :u=u1d
1u2d

2u3d
3↔

w: energy density function of a 
uniform rod, depending only on 
the strain vectors

m = ∂w
∂u

, n = ∂w
∂v

● hyperelastic rod: forces and moments are given by

discrete rod theory
      (vertex-based discrete rod)

d N
3

●

d 1 s

d 2s

d 3s

R = [d 1 , d 2 , d 3]:[0, L]  SO 3
r : [0, L]  ℝ3

r s 

● 'spatial discrete Euler-Lagrange system'
(involving the boundary data q

1
 and q

N
)

qi ∈ ℝ12

{P qiT  ∂W i−1

∂qi

∂W i

∂qi  = 0

g qi = 0 }
P: null space matrix, 
characterized by 
range P q = null D g q 

g: constraint function, 
enforcing the
SO(3)-constraints

typical boundary data 
for rod problems:
{q1,qN } i.e.
q1= qN=0

ITWM cable visualization
environment (MATLAB)
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● example: forces and moments of a discrete rod

material points
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material points
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● definition of a discrete energy function


