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Abstract For a physical system described by a motion in an energy landscape under
holonomic constraints, we study the !-convergence of variational integrators to the
corresponding continuum action functional and the convergence properties of solu-
tions of the discrete Euler–Lagrange equations to stationary points of the continuum
problem. This extends the results in Müller and Ortiz (J. Nonlinear Sci. 14:279–296,
2004) to constrained systems. The convergence result is illustrated with examples of
mass point systems and flexible multibody dynamics.
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1 Introduction

In this paper, we investigate mechanical systems in an n-dimensional configuration
space that can be described by the evolution t !→ u(t) ∈ Rn with time t subject to
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the potential V : Rn → R and subject to holonomic constraints. In Lagrangian me-
chanics, the physical trajectories of this motion arise as stationary points of the cor-
responding action functional I which is the kinetic energy minus the potential energy
integrated along the trajectory. In the presence of holonomic constraints, modeled by
the so-called constraint manifold M ⊂ Rn, requiring in addition that the trajectories
must lie on M, gives rise to the constrained functional IM .

The theory of discrete variational integrators provides approximations of such sys-
tems where now time is viewed as a discrete variable. By discretizing the action
functional I , resp., IM , in time, we arrive at discrete action functionals Ih, resp.,
Ih
M . (Here, we will concentrate on piecewise linear interpolations of trajectories.) A

discrete version of Hamilton’s principle of stationary action applied to these action
sums leads to discrete Euler–Lagrange equations whose solutions should be approx-
imations to the continuum motion. See Marsden and West (2001), and the references
therein, for a general introduction to the theory of variational integrators. Many struc-
ture preserving integration schemes for ODEs and their properties are investigated
extensively in Hairer et al. (2006). Concerning the symplectic integration of con-
strained systems, work has been done, e.g., by Jay (1996, 1998), Leimkuhler and
Reich (1994), Reich (1996) and for nonholonomic systems, e.g., by McLachlan and
Perlmutter (2006).

It has been first noticed by Ortiz and Müller that the theory of !-convergence
is a convenient tool to investigate the convergence properties of the discrete ap-
proximations to the continuum trajectories. (For a general introduction to the the-
ory of !-convergence see, e.g., Dal Maso (1993).) In Müller and Ortiz (2004),
they show that in fact Ih !-converges to I and apply this result to prove that dis-
crete stationary points of Ih converge to continuum stationary points of I . Their
work as been extended to more general Lagrangians by Maggi and Morini (2004).
!-convergence provides a powerful albeit as yet not widely used tool for under-
standing convergence of dynamical problems. Thus, !-convergence establishes con-
vergence of solutions in a global, instead of merely local, sense. In particular, it
allows comparing infinite wave trains. This is in contrast to conventional meth-
ods of analysis, such as Gronwall’s inequality (e.g., Marsden and West 2001) that
merely provide exponentially divergent local bounds on discretization errors. The
global nature of !-convergence is in analogy to the traditional phase-error analy-
sis of time-stepping algorithms for linear systems, which regards convergence in
terms of dispersion relations (e.g., Belytschko and Mullen 1976; Belytschko 1981;
Hughes 1987). However, !-convergence applies to much more general, possibly
strongly nonlinear dynamical systems. The main goal of the present paper is to ex-
tend the results of Müller and Ortiz (2004) to systems with holonomic constraints,
i.e., motions confined to lie on some constraint manifold M ⊂ Rn. (Since our varia-
tional integrators will be derived by piecewise linear interpolation of the continuum
trajectories, we will assume a linear ambient configuration space Rn for M .)

In order to describe such constrained systems, it will often be convenient to work
in local coordinates for M—at the expense of a more complicated form of the action
functional. The resulting Lagrangians are, in fact, of the form considered in Maggi
and Morini (2004). However, note carefully that for the discretized functional Ih

M ,
the constraint is enforced only at the nodal points of the underlying triangulation. As
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a consequence, our results cannot readily be inferred from the corresponding results
in Maggi and Morini (2004).

On the contrary, for constrained systems, we will encounter new phenomena
which are related to the fact that discrete trajectories are in general nonunique for
given initial positions and velocities. The main novelty introduced here for con-
strained systems is a selection criterion for the physically relevant solutions that firstly
guarantees that discrete trajectories do in fact converge to the continuum motion, and
secondly is satisfied in numerical implementations of the scheme. Analytically, the
main difficulty to overcome is to obtain improved regularity for the solutions of the
discrete Euler–Lagrange equation. Whereas, e.g., an L∞-bound on positions implies
an L∞-bound on velocities for unconstrained systems, the corresponding result is no
longer true for constrained motions without further assumptions.

We complement our analysis by studying two constrained mechanical systems
numerically. Holonomic constraints arise naturally in the description of multibody
dynamics comprising rigid, elastic, or both types of components. As an easy, yet
nontrivial example, we will discuss a double spherical pendulum in some detail. In
fact, hard configurational constraints are also obtained for systems in the realm of
finite elasticity in the limit of singular geometries, e.g., for plates, beams, etc. We
will also give an example showing that our results apply to (finite element approxi-
mations of) multibody dynamical systems comprising rigid and elastic components.
Note that in both examples, in addition to Theorem 3.4, our numerical computations
also provide the rate of convergence of the approximating trajectories.

A more precise account of the results in Müller and Ortiz (2004) and of our set-up
is as follows.

Let X = L2
loc(R,Rn), and by E denote the collection of all open bounded inter-

vals of R. Note that X is a complete metric space when endowed with the distance
function inferred from the seminorms ‖u‖L2((−k,k),Rn), k ∈N.

Let m > 0 and V ∈ C(Rn). The unconstrained action functional I : X × E →
R∪ {∞} is defined by

I (u,A) =
{∫

A
m
2 |u̇(t)|2 − V (u(t))dt, u ∈H 1(A,Rn),

+∞, otherwise.

If V ∈ C1, then the first variation of I (·,A) is given by

δI (u,ϕ,A) = d
dr

∣∣∣∣
r=0

I (u + rϕ,A)

=
∫

A
mu̇(t) · ϕ̇(t)−∇V

(
u(t)

)
· ϕ(t)dt

for u ∈ H 1(A,Rn), ϕ ∈ C∞c (A,Rn). (Note that by the Sobolev embedding theo-
rem u ∈ H 1(A,Rn) implies that u—modified on a set of measure zero—lies in
C(A,Rn).) We call u a stationary point of I if

I (u,A) <∞ and δI (u,ϕ,A) = 0

for all A ∈ E and ϕ ∈ C∞c (A,Rn).
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Suppose Th is a partition of R of size h, i.e., Th = {ti : i ∈ Z} for some · · · < ti <

ti+1 < · · · such that |ti+1− ti | ≤ h and ti →±∞ if i→±∞. Let Xh be the subspace
of X consisting of continuous functions such that u|(ti ,ti+1) is affine ∀ti ∈ Th. The
unconstrained discrete action functionals Ih : X× E →R are defined to be

Ih(u,A) =
{
I (u,A), u ∈Xh,

+∞, otherwise.

The stationary points of Ih are elements uh of Xh such that

I (uh,A) <∞ and δI (uh,ϕh,A) = 0

for all A ∈ E and ϕh ∈Xh with ϕh = 0 on R \ A. Note that if uh = 0 on R \ A, then
setting ui := uh(ti), we can write

Ih(uh,A) =
ν−1∑

i=µ

Ld(ui, ui+1)

where (tµ, tν)⊂A is the maximal subinterval of A compatible with Th and

Ld(ui, ui+1) = m

2
(ui+1 − ui)

2

ti+1 − ti
−

∫ ti+1

ti

V

(
ti+1 − t

ti+1 − ti
ui + t − ti

ti+1 − ti
ui+1

)
dt. (1)

So, stationary points of Ih are solutions of the discrete Euler–Lagrange equations

∇2Ld(ui−1, ui) +∇1Ld(ui, ui+1) = 0, i = µ + 1, . . . , ν − 1.

The connection between I and its discrete counterpart Ih is studied in detail
in Müller and Ortiz (2004), where, in particular, it is shown that if V ∈ C(Rn) with
V (s)≤ C(1 + |s|2), then:

• For all A ∈ E , !-limh→0 Ih(·,A) = I (·,A) in X. (For the definition of !-
convergence, see below.)

• If in addition V ∈ C2 with |∇2V | ≤ C for some constant C, then sequences of sta-
tionary points of Ih that are uniformly bounded converge—up to subsequences—
weakly* in W 1,∞ to some u ∈W 2,∞. Moreover the limiting trajectory u is a sta-
tionary point of the continuum action functional I .

• If moreover the Fourier transforms ûh of uh are uniformly bounded Radon mea-
sures such that no mass leaks to infinity as h→ 0, then ûh→ û as measures in the
flat norm.

(Also compare the results in Maggi and Morini (2004) for more general function-
als I .)

Here, we are in particular interested in mechanical systems with holonomic
constraints. This can be modeled by requiring that u ∈ M a.e. for some suitable
(k-dimensional) submanifold M of Rn (the “constraint manifold”), which we will
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assume to be at least of class C3. Accordingly, we define the constrained action func-
tional IM : X× E →R∪ {∞} by

IM(u,A) =
{
I (u,A), u ∈M a.e. on A,

+∞, otherwise.

The constrained discrete action functionals Ih
M : X× E →R are

Ih
M(u,A) =

{
Ih(u,A), u(t) ∈M ∀t ∈ Th ∩A,

+∞, otherwise.

In view of our examples in Sect. 4, let us also mention that our results can be extended
in a straightforward way to systems with a general positive definite mass matrix m,
i.e., whose kinetic energy is given by 1

2 u̇Tm u̇ rather than m
2 |u̇|2.

The stationary points for constrained systems are most conveniently defined in
terms of local coordinates for M . Suppose A ∈ E and u is such that IM(u,A) is
finite. (So, in particular, u is continuous and takes values in M on A.) Assume that
u(A) is covered by the domain U ⊂M of a single coordinate chart, whose inverse is
denoted ψ : Rk ⊃ V → U . Define the curve v : A→ V by u|A = ψ ◦ v. Then u is
said to be a stationary point of IM(·,A) if v is a stationary point of

J̃ψ (v,A) := I (ψ ◦ v,A),

which means that

δJ̃ψ(v,ϕ,A) = d
dr

∣∣∣∣
r=0

J̃ψ (v + rϕ,A) = 0

for all ϕ ∈ C∞c (A,Rk). (By density, it follows that then, in fact, J̃ψ (v,ϕ,A) = 0 for
all ϕ ∈H 1

0 (A,Rn). It is not hard to see that this, in particular, implies that stationary
points of IM(·,A) are well defined.) We say that u is a stationary point for IM if there
exists a covering R = ⋃

i∈I Ai with Ai ∈ E such that u(Ai) is covered by a single
chart and u|Ai is a stationary point of I (·,Ai) for all i. (Using a partition of unity, it
is again easy to see that this notion is well defined.)

With the notation introduced above the discrete stationary points of Ih
M are func-

tions in uh ∈Xh such that

∇vi

ν−1∑

j=µ

Ld

(
ψ(vi),ψ(vi+1)

)
= 0,

where ψ(vj ) = uj or equivalently,

∇2Ld(ui−1, ui) +∇1Ld(ui, ui+1)⊥ Tui M. (2)

2 !-convergence

Our first aim is to obtain a !-convergence result for constrained systems. Recall that
a sequence of functionals Fh : Y → [−∞,∞] on a metric space Y is said to !-con-
verge to the functional F if the following two conditions are satisfied.
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(i) (“lim inf-inequality”) Whenever yh→ y in Y then

lim inf
h→0

Fh(yh)≥ F(y).

(ii) (“recovery sequence”) For each y ∈ Y, there exists a sequence yh→ y such that

lim
h→0

Fh(yh) = F(y).

Proposition 2.1 Let V ∈ C(Rn) with |V (s)| ≤ C(1 + |s|2), A ∈ E . Then Ih
M(·,A)

!-converges in X and

! − lim
h→0

Ih
M(·,A) = IM(·,A).

We will first prove two preparatory results. Assume that V ∈ C(Rn) with |V (s)| ≤
C(1 + |s|2) throughout this section. Part (i) of the following lemma is contained
in Müller and Ortiz (2004).

Lemma 2.2 Let A ∈ E .

(i) Then I (·,A) is lower semicontinuous in X and continuous in H 1(A,Rn).
(ii) If, for a sequence hk → 0, uhk ∈Xhk converges to u in X such that Ih

M(uhk ,A)

is bounded. Then u ∈M a.e. on A.

Proof (i) Due to our assumptions on V , u !→
∫
A V (u)dt is continuous on L2(A,Rn),

and thus on X and on H 1(A,Rn). Now, u !→
∫
A

m
2 u̇2 dt is clearly continuous on

H 1(A,Rn), which proves the second claim. But it is also lower semicontinuous on
L2(A,Rn) since it is lower semicontinuous H 1(A,Rn) with respect to the weak
topology and takes the value∞ outside H 1(A,Rn).

(ii) Ih
M(uhk ,A) and

∫
A V (uhk ) being bounded, in fact, uhk converges weakly to u

in H 1(A,Rn). So, by the Sobolev embedding theorem, we may assume that uhk → u

uniformly in C(A,Rn). But again because Ih
M(uhk ,A) is bounded, uhk (t) ∈M for all

t ∈ Th ∩A, and the claim follows. !

We will also need the following approximation result extending the corresponding
assertion in Müller and Ortiz (2004) to our setting of constrained Lagrangians.

Lemma 2.3 Let A ∈ E . For every u ∈ X with IM(u,A) <∞, there is a sequence
uh ∈Xh such that uh→ u in X and uh|A→ u|A in H 1(A,Rn) and uh(t) ∈M for all
t ∈ Th ∩A.

Proof Let A = (a, b), η ∈ C∞c (−1,1) be a standard mollifier and define ηh(x) =
h−1η(x/h). Let Nhw denote the nodal interpolation of a function w with respect
to the triangulation Th. By the Sobolev embedding theorem, we may assume that
u ∈ C([a, b],Rn). As in Müller and Ortiz (2004), we define approximations of u



J Nonlinear Sci

which are continuous in the slightly larger interval (a − 2h,b + 2h):

vh(t) =






u(t), t ≤ a − 2h,

u(a), a − 2h < t ≤ a,

u(t), a < t < b,

u(b), b ≤ t < b + 2h,

u(t), t ≥ b + 2h.

With the help of standard estimates on nodal interpolations and convolutions such as

∫ s

r

∣∣∣∣
d
dt

(Nhw−w)

∣∣∣∣
2

dt ≤ C

∫ s+h

r−h
|ẇ|2 dt,

∫ s

r
|ηh ∗w|2 dt ≤ C

∫ s+h

r−h
|w|2 dt

(3)

(which are included here for later reference), in Müller and Ortiz (2004), it is shown
that

Thvh := Nh(ηh ∗ vh)→ u in X and in H 1(A,Rn
)
. (4)

Let g, to be specified later, be a positive function on (0,∞) such that g(h)→ 0
as h→ 0. Since in a suitable neighborhood of M the orthogonal projection P of the
ambient space Rn onto M is well defined, smooth, and globally Lipschitz, we may
choose neighborhoods Uh of M and α : M → (0,∞) such that

{
x ∈Rn : dist(x,M)≤ α(Px)g(h)

}
⊂Uh ⊂

{
x ∈Rn : dist(x,M) < g(h)

}
,

where α > c(K) > 0 on compacts K ⊂M , and functions ph ∈ C2(Rn,Rn) that are
globally Lipschitz continuous with Lipschitz constant independent of h such that
ph ≡ P on Uh and ph ≡ id on {x ∈ Rn : dist(x,M) ≥ g(h)}. Set Shw := Nh(ph ◦
(ηh ∗w)). Then ‖Thvh − Shvh‖L∞ ≤ g(h) and thus Shvh→ u in X by (4).

Since u is uniformly continuous on [a, b], we can choose g = g(h) to be the
modulus of continuity of u|A such that if |t − s| ≤ h, then |u(t)− u(s)| ≤ g(h) and
g(h)→ 0 as h→ 0. But then

dist
(
ηh ∗ vh(t),M

)
≤ Cg2(h) (5)

on [a − h,b + h]. So, by construction of ph, we obtain that ph(ηh ∗ vh) ∈M on A,
and thus indeed Shvh(t) ∈M for all t ∈ Th ∩A.

It remains to estimate

∫ b

a

∣∣∣∣
d
dt

(Shvh − Thvh)

∣∣∣∣
2

dt ≤ C

∫ b+h

a−h

∣∣∣∣
d
dt

(
ph(ηh ∗ vh)− ηh ∗ vh

)∣∣∣∣
2

dt

= C

∫ b+h

a−h

∣∣∇ph(ηh ∗ vh) · (ηh ∗ v̇h)− ηh ∗ v̇h

∣∣2 dt, (6)
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where the inequality followed from (3). Again by (5), ∇2ph is bounded on [ηh ∗
vh(t), vh(t)], and thus

∣∣∇ph

(
ηh ∗ vh(t)

)
−∇ph

(
vh(t)

)∣∣≤ Cg(h). (7)

For t ∈ (a − h,b + h), we can decompose v̇h(s) into one part v̇
‖
h(s) which lies in

Tvh(t)M and an orthogonal part v̇⊥h (s). If |t − s| ≤ h, then |v̇⊥h (s)| ≤ Cg(h)|v̇‖h(s)| ≤
Cg(h)|v̇h(s)|. Noting that ∇ph(vh(t)) · (ηh ∗ v̇

‖
h(t)) = ηh ∗ v̇

‖
h(t) we can estimate

∣∣∇ph

(
vh(t)

)
·
(
ηh ∗ v̇h(t)

)
− ηh ∗ v̇h(t)

∣∣

=
∣∣∇ph

(
vh(t)

)
·
(
ηh ∗ v̇⊥h (t)

)
− ηh ∗ v̇⊥h (t)

∣∣≤ Cg(h)
(
ηh ∗ |v̇h|

)
(t).

It then follows from (3) that
∫ b+h

a−h

∣∣∇ph(vh) · (ηh ∗ v̇h)− ηh ∗ v̇h

∣∣2 dt ≤ Cg2(h)

∫ b+2h

a−2h
|v̇h|2 dt. (8)

Now combine (6), (7), and (8) and apply (3) once more to arrive at

∫ b

a

∣∣∣∣
d
dt

(Shvh − Thvh)

∣∣∣∣
2

dt

≤ Cg2(h)

∫ b+h

a−h
|ηh ∗ v̇h|2 dt + C

∫ b+h

a−h

∣∣∇ph(vh) · (ηh ∗ v̇h)− ηh ∗ v̇h

∣∣2 dt

≤ Cg2(h)

∫ b+2h

a−2h
|v̇h|2 dt → 0

as h→ 0, so that indeed Shvh→ u in H 1(A,Rn) by (4). !

Remark 2.4 Note that if u̇ is bounded on A, then the above constructed approxima-
tions Shuh satisfy ‖ d

dt (Shuh)‖L∞(A,Rn) ≤ C‖u̇‖L∞(A,Rn).

With these preparations, we can now prove Proposition 2.1.

Proof of Proposition 2.1 Let uh ∈ X be a sequence converging to u ∈ X. We may
assume that Ih

M(uh,A) is bounded and so uh(t) ∈M for all t ∈ Th ∩A and u ∈M on
A by Lemma 2.2(ii). Since Ih(·,A)≥ I (·,A), we therefore obtain by Lemma 2.2(i)

lim inf
h→0

Ih
M(uh,A) = lim inf

h→0
Ih(uh,A)≥ lim inf

h→0
I (uh,A)

≥ I (u,A) = IM(u,A).

To provide a recovery sequence for u ∈X we may w.l.o.g. assume that IM(u,A) <
∞. By Lemma 2.3, there is a sequence uh ∈Xh such that uh→ u in X, uh|A → u|A
in H 1(A,Rn) and uh(t) ∈M for all t ∈ Th ∩A. So, by Lemma 2.2(i),

Ih
M(uh,A) = Ih(uh,A) = I (uh,A)→ I (u,A) = IM(u,A). !
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Fig. 1 Motion on the unit circle

3 Stationary Points

In this section, we will investigate the limiting behavior of a sequence uh of stationary
points of Ih

M . For the unconstrained case, it is shown in Müller and Ortiz (2004)
(also compare Maggi and Morini 2004) that if uh is stationary for Ih and ‖uh‖L∞
is bounded independently of h, then also ‖u‖W 1,∞ is bounded and in particular—for

a subsequence—uh
∗
⇀ u for some u in W 1,∞. Furthermore, u is a stationary point

of the limiting functional I . We will first see that this does in general not hold for
constrained systems. An easy example shows that a sequence of stationary points
of Ih

M , although bounded in L∞, might blow up in W 1,∞
loc . However, we will see

that this cannot happen if the action Ih
M(uh,A) over bounded intervals A remains

bounded. In this case, our main result will be that in fact—up to subsequences—uh

converges weakly* in W 1,∞
loc to some stationary point u of IM .

Example 3.1 (Motion on the unit circle) Suppose M = S1 ⊂R2. Let Th = hZ, m = 1
and V ≡ 0. Let ui = uh(ih). Then uh is stationary if

ui+1 + ui−1 ∈Rui.

The easiest example is given by ui = (cos(iα), sin(iα)) where α = α(h) is fixed.
However, if α4 h, then |u̇| = |2 sin(α2 )h−1| a.e. diverges.

But even if the trajectory behaves nicely initially, |u̇| does not have to re-
main bounded. Let, e.g., ui = (cos(ih), sin(ih)) if i ≤ 0. For positive i, set
ui = (cos((i − 2)h + π), sin((i − 2)h + π)) (see Fig. 1(b)) or, even worse, ui =
(− cos(h), sin(h)), (−1,0), (cos(h),− sin(h)), (1,0) for i ≡ 1,2,3,4 mod 4, respec-
tively (see Fig. 1(c)). In both cases, u̇ blows up in W 1,∞ (and in H 1).

Lemma 3.2 Suppose u ∈ Xh is a stationary point of Ih
M , t∗ ∈ R, c > 0 is a con-

stant and V ∈ C2. Let A = (a, b) ∈ E be a sufficiently small neighborhood of t∗ and
assume that ‖u̇‖L∞(A,Rn) < c. Then there exists a constant C > 0 such that, for all
u′ ∈Xh with ‖u̇′‖L∞(A,Rn) ≤ c, |u′(a)− u(a)| ≤ ε and |u′(b)− u(b)| ≤ ε,

Ih
M

(
u′, (a, b)

)
≥ Ih

M

(
u, (a, b)

)
−Ch−Cε.

Proof For |b−a| small enough, the c|b−a|-neighborhood of u(A) lies in the domain
U ⊂M of a single chart ψ−1 : U → V ⊂Rk , say. For curves v with values in V, we
define J̃ = J̃ψ = I ◦ψ as before and J by

J (v) := I
(
Nhψ(v)

)
.
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Note that for w ∈Xh with nodal points wi ∈M , the linear interpolation v of ψ−1(wi)

satisfies J (v) = Ih(w) and ‖v̇‖L∞(A,Rk) ≤ C‖ẇ‖L∞(A,Rn).
Assume first that a, b ∈ Th and that u′(a) = u(a), u′(b) = u(b). We have to show

that for all piecewise affine functions v′ with ‖v̇′‖L∞ ≤ c′ for some constant c′,

J
(
v′

)
≥ J (v)−Ch,

where v = Nhψ
−1(u).

Let w be a piecewise affine curve with values in V . Then by Taylor expansion

∫ b

a

∣∣Nhψ(w)−ψ(w)
∣∣2 dt ≤ Ch2

∥∥∥∥
d
dt
ψ(w)

∥∥∥∥
2

L∞(A,Rk)

≤ Ch2‖ẇ‖2
L∞(A,Rk)

and
∫ b

a

∣∣∣∣
d
dt

(
Nhψ(w)−ψ(w)

)∣∣∣∣
2

dt ≤ Ch2
∥∥∥∥

d2

dt2ψ(w)

∥∥∥∥
2

L∞(A,Rk)

= Ch2∥∥∇2ψ(w)(ẇ, ẇ)
∥∥2

L∞(A,Rk)
≤ Ch2‖ẇ‖4

L∞(A,Rk)
,

where d2

dt2 ψ(w) is the absolute continuous part of the second derivative of ψ ◦ w.
Thus, if ‖ẇ‖L∞(A,Rk) is bounded,

∣∣J (w)− J̃ (w)
∣∣ =

∣∣I
(
Nhψ(w)

)
− I

(
ψ(w)

)∣∣

=
∣∣∣∣

∫ b

a

∣∣∣∣
d
dt

Nhψ(w)

∣∣∣∣
2

− V
(
Nhψ(w)

)
dt

−
∫ b

a

∣∣∣∣
d
dt
ψ(w)

∣∣∣∣
2

− V
(
ψ(w)

)
dt

∣∣∣∣

≤Ch.

We also need to compare the first variations of J and J̃ . Let ϕ be a piecewise
affine curve such that w(t) + rϕ(t) ∈ V for all t ∈ [a, b], r ∈ [0,1]. Then

d
dr

∣∣∣∣
r=0

J̃ (w + rϕ)

=
∫ b

a
m

(
d
dt
ψ(w)

)
·
(

d
dt

(
∇ψ(w)ϕ

))
−∇V

(
ψ(w)

)
∇ψ(w)ϕ dt

and

d
dr

∣∣∣∣
r=0

J (w + rϕ)

=
∫ b

a
m

(
d
dt

Nhψ(w)

)
·
(

d
dt

Nh

[
∇ψ(w)ϕ

])
−∇V

(
Nhψ(w)

)
Nh

[
∇ψ(w)ϕ

]
dt.
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Now similar estimates as above show that
∣∣∣∣

d
dr

∣∣∣∣
r=0

J̃ (w + rϕ)− d
dr

∣∣∣∣
r=0

J (w + rϕ)

∣∣∣∣≤ Ch.

Now choose ϕ such that v + ϕ = v′. Since v is a stationary point of J , the above
estimates show that

J (v + ϕ)− J (v)≥ J̃ (v + ϕ)− J̃ (v)−Ch

= d
dr

∣∣∣∣
r=0

J̃ (v + rϕ) +
∫ 1

0
(1− r)

d2

dr2 J̃ (v + rϕ)dr −Ch

≥ d
dr

∣∣∣∣
r=0

J (v + rϕ) +
∫ 1

0
(1− r)

d2

dr2 J̃ (v + rϕ)dr −Ch

=
∫ 1

0
(1− r)

d2

dr2 J̃ (v + rϕ)dr −Ch.

But

d2

dr2 J̃ (v + rϕ) =
∫ b

a
m

∣∣∇ψ(v + rϕ) · ϕ̇ +∇2ψ(v + rϕ)(v̇ + rϕ̇, ϕ)
∣∣2

+ m
(
∇ψ(v + rϕ) · (v̇ + rϕ̇)

)

·
(
∇3ψ(v + rϕ)(v̇ + rϕ̇, ϕ,ϕ) + 2∇2ψ(v + rϕ)(ϕ̇, ϕ)

)

−∇2V
(
ψ(v + rϕ)

)(
∇ψ(v + rϕ) · ϕ,∇ψ(v + rϕ) · ϕ

)

−∇V
(
ψ(v + rϕ)

)
∇2ψ(v + rϕ)(ϕ,ϕ)dt

≥
∫ b

a
C′|ϕ̇|2 −C

(
|ϕ| + |ϕ|2

)
|ϕ̇|2 −C

(
|ϕ| + |ϕ|2

)
|ϕ̇| −C|ϕ|2 dt

for some C′ > 0.
So, if |b− a|, and hence ‖ϕ‖L∞ is small enough, we have

d2

dr2 J̃ (v + rϕ)≥
∫ b

a

C′

2
|ϕ̇|2 −C|ϕ| · |ϕ̇| −C|ϕ|2 dt ≥

∫ b

a

C′

4
|ϕ̇|2 −C|ϕ|2 dt

≥
∫ b

a

C′π2

4|b− a|2 |ϕ|2 −C|ϕ|2 dt ≥ 0

by Poincaré’s inequality, which concludes the first part of the proof.
Now in the general case, we can choose a maximal interval (ah, bh) ⊂ (a, b)

compatible with Th and an affine function lh such that v′(ah) + lh(ah) = v(ah),
v′(bh) + lh(bh) = v(bh). Then ‖lh‖W 1,∞ ≤ C(ε + h) and so |J (v′ + lh, (ah, bh))−
J (v′, (ah, bh))| ≤ C(ε + h). By our bounds on v′ and v, we also have

∣∣J
(
v′, (ah, bh)

)
− J

(
v′, (a, b)

)∣∣ +
∣∣J

(
v, (ah, bh)

)
− J

(
v, (a, b)

)∣∣≤ Ch.
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So, by the first part of the proof, we obtain

J
(
v′, (a, b)

)
≥ J

(
v′, (ah, bh)

)
−Ch≥ J

(
v′ + lh, (ah, bh)

)
−Ch−Cε

≥ J
(
v, (ah, bh)

)
−Ch−Cε ≥ J

(
v, (a, b)

)
−Ch−Cε. !

We now investigate the limiting behavior of a sequence uh of stationary points
of Ih

M . Assuming that (uh) is locally bounded, we clearly have that for a subsequence

uh
∗
⇀ u in L∞loc for some u. However, as seen in Example 3.1, in general, the limit

u does not even have to be continuous or to lie on the constraint manifold M . Note
that in all these cases the discrete action functional Ih

M(uh,A) blows up as h→ 0
even over bounded intervals A. To avoid such pathological limiting behavior, we will
assume that the action Ih

M(uh,A) remains bounded for each A ∈ E . Then we can, in
fact, prove a positive result.

Lemma 3.3 Let V ∈ C1 such that |V (s)| ≤ C(1 + |s|2) and suppose that uh is a
sequence of stationary points for Ih

M such that |uh(0)| and, for each A ∈ E , Ih
M(uh,A)

is bounded. Then uh is bounded in W 1,∞
loc (R,Rn).

Proof Let a < b. Using the elementary bounds

‖u‖L2((a,b),Rn) ≤
√

b− a
∣∣u(a)

∣∣ + (b− a)‖u̇‖L2((a,b),Rn) and

∣∣u(t)
∣∣≤
√

1 + b− a

√∣∣u(a)
∣∣2 + ‖u̇‖2

L2((a,b),Rn)
, t ∈ [a, b],

we see that

∣∣uh(t)
∣∣≤ 2

√
∣∣uh(a)

∣∣2 + 1
m

I
(
uh, (a, b)

)
+ C|b− a|

m

for t ∈ [a, b], whenever b−a is so small that b−a < 1 and 8C(b−a)≤ (1−b+a)m.
An analogous inequality holds with the roles of a and b interchanged. So, inductively
we see that (uh) is bounded in L∞loc(R,Rn), and hence by boundedness of the actions,
in H 1

loc(R,Rn). In particular, a suitable subsequence converges to some continuous u

uniformly on compact subsets of R.
Let A = (a, b) ∈ E and cover a neighborhood of u([a, b]) with finitely many do-

mains U1, . . . ,UN ⊂M such that on each Uj

|y − x| ≤
∣∣Px(y − x)

∣∣ + C′
∣∣Px(y − x)

∣∣3 ∀x, y ∈Uj ,

where Px is the projection onto TxM . The discrete Euler–Lagrange equations yield

Pui

[
m

(
ui+1 − ui

ti+1 − ti
− ui − ui−1

ti − ti−1

)
+

∫ ti+1

ti

∇V
(
uh(t)

) ti+1 − t

ti+1 − ti
dt

+
∫ ti

ti−1

∇V
(
uh(t)

) t − ti−1

ti − ti−1
dt

]
= 0
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and so
∣∣∣∣Pui

(
ui+1 − ui

ti+1 − ti
− ui − ui−1

ti − ti−1

)∣∣∣∣≤ C|ti+1 − ti−1|.

Now, if h is small enough, then for every i, the points ui−1, ui, and ui+1 lie in a
single domain Uj , say. But then

|ui+1 − ui | ≤
∣∣Pui (ui+1 − ui)

∣∣ + C′
∣∣Pui (ui+1 − ui)

∣∣3

and thus
∣∣∣∣
ui+1 − ui

ti+1 − ti

∣∣∣∣≤
∣∣∣∣
ui − ui−1

ti − ti−1

∣∣∣∣ + C(ti+1 − ti−1)

+ C′(ti+1 − ti )
2
(∣∣∣∣

ui − ui−1

ti − ti−1

∣∣∣∣ + C(ti+1 − ti−1)

)3

. (9)

Since ‖u̇h‖L2(A,Rn) is bounded, there is a constant c, independent of h, such that

|ui0−ui0−1
ti0−ti0−1

| ≤ c for some i0 = i0(h) with ti0 ∈ A. Set γi := |ui−ui−1
ti−ti−1

|, fi := C(ti −
ti−2), gi := C′(ti − ti−1)

2. Then (9) reads

γi+1 ≤ γi + fi+1 + gi+1(γi + fi+1)
3, γi0 ≤ c.

For i ≥ i0 with ti ≤ b + h, we let

Fi =
i∑

j=i0+1

fj and Gi =
i∑

j=i0+1

gj

and claim that for small h,

γi ≤ c + Fi + Gi(c + Fi + 1)3. (10)

This can be easily seen by induction on i. The case i = i0 is clear. If (10) holds for
i ≥ i0, then

γi+1 ≤ γi + fi+1 + gi+1(γi + fi+1)
3

≤ c + Fi+1 + Gi(c + Fi + 1)3 + gi+1
(
c + Fi+1 + Gi(c + Fi + 1)3)3

!≤ c + Fi+1 + Gi+1(c + Fi+1 + 1)3,

and the last inequality follows if

gi+1
(
c + Fi+1 + Gi(c + Fi + 1)3)3 ≤ gi+1(c + Fi+1 + 1)3,

i.e., if Gi(c + Fi + 1)3 ≤ 1. But this is satisfied for small h because

Fi = C

i∑

j=i0+1

(tj − tj−2) = C(ti + ti−1 − ti0 − ti0−1)≤ C(b− a + 2h) (11)
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and

Gi = C′
i∑

j=i0+1

(tj − tj−1)
2 ≤ C′ max

i0+1≤j≤i
(tj − tj−1) ·

i∑

j=i0+1

(tj − tj−1)

≤ C′h(b− a + h). (12)

Now applying (11) and (12) to (10), we see that in fact |u̇h| ≤ C on [ti0−1, b].
A similar argument yields that |u̇h| is bounded on [a, ti0], too, which concludes the
proof. !

We are now in a position to state and prove our main result on the limiting behavior
of a sequence of discrete trajectories. Note, in particular, that we also have strong
convergence of the velocities.

Theorem 3.4 Assume that V ∈ C2 satisfies |V (s)| ≤ C(1 + |s|2). Suppose uh is a
sequence of stationary points for Ih

M such that |uh(0)| and Ih
M(uh,A) are bounded

uniformly in h for all A ∈ E . Then there exists a subsequence such that uh
∗
⇀ u in

W 1,∞
loc (R,Rn), uh→ u in W

1,p
loc (R,Rn) for all 1≤ p <∞ and u is a stationary point

of IM .

Proof By Lemma 3.3, (uh) is weak*-precompact in W 1,∞
loc (R,Rn), so it has a con-

vergent subsequence (not relabeled) uh
∗
⇀ u (and, in particular, uh → u uniformly

on compact subsets of R). Let A ∈ E . By Proposition 2.1

∞> lim inf
h→0

Ih
M(uh,A)≥ IM(u,A).

In order to prove that u is a stationary point of IM, we will show that for every
t∗ ∈ R, u is, in fact, a W 1,∞-local minimizer of IM(·,A) with respect to its own
boundary values on A whenever A = (a, b) is a sufficiently small neighborhood of t∗.
By density, this implies that u is a stationary point of IM(·,A).

Let ũ be a curve with ũ(a) = u(a), ũ(b) = u(b), and ‖ũ − u‖W 1,∞(A) suffi-
ciently small. Choose a recovery sequence ũh for ũ as in the proof of Proposition 2.1
such that ũh → ũ uniformly on A. Note that by Remark 2.4, we may assume that
‖ ˙̃uh‖L∞(A,Rn) is bounded independently of h. Since uh → u and ũh → ũ uniformly
on A,

∣∣uh(a)− ũh(a)
∣∣,

∣∣uh(b)− ũh(b)
∣∣≤ ε(h)

for some ε(h)→ 0 as h→ 0. But then, if |b−a| is sufficiently small, we obtain from
Lemma 3.2

IM(ũ,A) = lim
h→0

Ih
M(ũh,A)≥ lim sup

h→0

(
Ih
M(uh,A)−Ch−Cε(h)

)

≥ lim inf
h→0

(
Ih
M(uh,A)−Ch−Cε(h)

)
≥ IM(u,A),
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which proves the local minimality of u.
Setting ũ = u, the above argument shows that limh Ih

M(uh,A) = IM(u,A), hence

IM(u,A) = lim
h→0

∫

A

m

2

(
|u̇|2 + 2u̇ · (u̇h − u̇) + |u̇h − u̇|2

)
− V (uh)dt

= IM(u,A) + 0 + lim
h→0

‖u̇h − u̇‖2
L2 .

But then u̇h → u̇ in L2(A,Rn) and so, u̇h being bounded in L∞(A,Rn), u̇h → u̇ in
Lp(A,Rn) for all 1≤ p <∞. !

4 Numerical Examples

In this section, the statements of Theorem 3.4 will be illustrated by means of numer-
ical examples. The discrete path {ui}Ni=0 ⊂Xh of a mechanical system is determined
as a stationary point of the constrained discrete action functional Ih

M . According to
(2), the stationary points are characterized by

∇2Ld(ui−1, ui) +∇1Ld(ui, ui+1)⊥ Tui M. (13)

In the sequel, it is assumed that the triangulation Th is equispaced, and the constant
timestep is denoted by h = ti+1 − ti . There are several methods for the implementa-
tion of an algorithm that finds discrete paths matching condition (13). Assume that
the constraint manifold is specified by the holonomic constraint functions g(u) =
0 ∈ Rm, m = n− k, in particular if zero is a regular value of the constraints, then =
g−1(0) = M is a k-dimensional submanifold of Rn. Let G(u) =∇g(u) denote the Ja-
cobian of the constraints, then Rn = Tui M⊕(Tui M)⊥ = null(G(u))⊕ range(GT(u)).
Thus, it is possible to use the Lagrange multiplier method to find appropriate paths.
The corresponding discrete Euler–Lagrange equations then read

∇2Ld(ui−1, ui) +∇1Ld(ui, ui+1) + hGT(ui) · λi = 0,

g(ui+1) = 0.
(14)

Since the vector of Lagrange multipliers λi ∈ Rm has to be determined as a variable
by the algorithm, the system has to be augmented by the constraint equations (14)2
and is then n + m-dimensional. Being a two-step method, the algorithm (14) is not
self-starting. From given initial configuration u0 and initial conjugate momentum p0,
the configuration u1 (and the Lagrange multiplier λ0) can be calculated via the con-
strained discrete Legendre transform

p0 +∇1Ld(u0, u1) + h

2
GT(u0) · λ0 = 0,

g(u1) = 0
(15)

in a way that is consistent with the constrained dynamics.
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Alternatively, the discrete null space method can be used. Besides leading to a
k-dimensional system of equations, it also bears the advantage of removing the con-
ditioning problems associated with the use of the Lagrange multiplier method. The
discrete null space method relies on a transformation of (14) in two steps. First of all,
(14)1 is premultiplied with the transpose of the null space matrix P(u) : Rk → TuM ,
having the property range(P (u)) = null(G(u)). Secondly, (14)2 is redundantized in-
troducing the nodal reparametrization ui+1 = Fd(wi+1, ui) ∈M . The resulting time-
stepping scheme

P T(ui) ·
[
∇2Ld(ui−1, ui) +∇1Ld

(
ui,Fd(wi+1, ui)

)]
= 0 (16)

has to be solved for wi+1 whereupon the redundant configuration variable can be
updated using the nodal reparametrization Fd . A consistent configuration u1 can be
found from the equation

P T(u0) ·
[
p0 +∇1Ld

(
u0,Fd(w1, u0)

)]
= 0. (17)

It is important to note that (16) and (14) are equivalent and both schemes are vari-
ational. See Leyendecker et al. (2008b) for a detailed investigation of the discrete
null space method for the variational integration of constrained dynamical systems.
Previous works on the discrete null space method in conjunction with an energy-
momentum conserving scheme are Betsch (2005), Betsch and Leyendecker (2006),
Leyendecker et al. (2008a).

In the following examples, the midpoint rule has been used to approximate the
integral of the potential energy over one timestep in the discrete Lagrangian given
in (1), thus the discrete Lagrangian reads

Ld(ui, ui+1) = m

2
(ui+1 − ui)

2

h
− hV

(
ui+1 + ui

2

)
. (18)

Using the variational integrator with Lagrange multipliers for constraint enforce-
ment (14), the resulting implicit scheme is similar to the SHAKE algorithm. How-
ever, SHAKE is based on a trapezoidal rule (instead of the midpoint rule) yielding the
evaluation of the potential gradient at one given configuration only, which can have
unfavorable consequences on the robustness of simulations, in particular in the con-
text of stiff nonlinear elasticity problems as beam dynamics. In contrast to the so far
mentioned algorithms that enforce configuration constraints only, the velocity Verlet
integrator RATTLE enforces the temporally differentiated form of the constraints on
velocity level as well; see Andersen (1983).

4.1 Double Spherical Pendulum

The motion of a double spherical pendulum in three dimensional space has been
simulated using the discrete null space method, i.e., (16) is solved to determine the
stationary points of the constrained discrete action functional Ih

M . The double spheri-
cal pendulum in Fig. 2 is suspended at the origin of the inertial frame {eI }. Massless
rigid rods of lengths l1, l2 ∈ R connect the masses m1,m2 ∈ R to each other and
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Fig. 2 Double spherical
pendulum

to the origin, respectively. The gravitational acceleration with value g points in the
negative e3-direction. The configuration variable u ∈ R6 is composed of the place-
ment in space u1 ∈ R3 of the first mass and the placement u2 ∈ R3 of the second
mass m2 ∈ R relative to the first one. The constraints represent the constancy of the
lengths of the rigid rods. They restrict possible configurations to the constraint mani-
fold M = S2

l1
× S2

l2
consisting of two spheres: one about the origin with radius l1 and

one about the first mass with radius l2.
In the simulation of the double spherical pendulum’s motion, the following para-

meters have been used. The masses are m1 = 10 and m2 = 5 and the rigid rods have
the lengths l1 = 1 and l2 = 1.5. The gravitational acceleration is given by g = 9.81.
The initial positions of the point masses are u1(0) = l1e1 and u2(0) = l2e1 and initial
velocities are given by u̇1(0) = e2 and u̇2(0) = e3. These initial velocities are con-
sistent with the constraints, i.e., they lie in the tangent space Tu0M . The considered
motion takes place in the time interval Ā = [0,10].

Snapshots of the motion of the double spherical pendulum are shown in Fig. 3
on the left. The diagram on the right confirms the algorithmic conservation of the
component L3 of the angular momentum corresponding to the gravitational direction.
Furthermore, the good energy behavior of the variational integrator is revealed by the
evolution of the total energy which appears to be conserved. In fact, the total energy
oscillates around the correct value with amplitudes in the range of 10−3.

Table 1 shows that for the considered example, velocities are indeed bounded in-
dependently of h.

A reference solution uhref has been calculated using the time step href = 10−5.
The convergence statement of Theorem 3.4 is illustrated by Fig. 4. It reveals the
well-known fact that variational integrators based on a discrete Lagrangian given in
(18) are second order convergent also holds for constrained problems.



J Nonlinear Sci

F
ig

.3
D

ou
bl

e
sp

he
ri

ca
lp

en
du

lu
m

:s
na

ps
ho

ts
of

th
e

m
ot

io
n

an
d

en
er

gy
an

d
co

m
po

ne
nt

s
of

an
gu

la
rm

om
en

tu
m

L
=

L
ie

i
(h

=
10
−5

)



J Nonlinear Sci

Table 1 Double spherical
pendulum: boundedness of
velocity

h max
tj∈{ti }Ni=0

∥∥u̇h(tj )
∥∥

10−1 14.437579674951671

10−2 11.992045771547241

10−3 11.979460050283279

10−4 11.979355188823591

10−5 11.979353929835233

Fig. 4 Double spherical
pendulum: second order
convergence to reference
solution for
h ∈ [10−1, . . . ,10−4]

Fig. 5 Three-bar swing
comprising a flexible beam with
midspan mass hinged (by
revolute joints R) to rigid bodies
fixed in space (by spherical
joints S)

4.2 Three-Bar Swing

The second example deals with the swing shown in Fig. 5. It consists of an elastic
beam hinged at its ends to rigid bodies by revolute joints. The rigid bodies are fixed in
space by spherical joints. An additional point mass is concentrated at the beam’s mid-
point. This example has been investigated previously in Bauchau et al. (1995) using
an energy-conserving scheme and the generalized-α method. In Ibrahimbegović and
Mamouri (2002) results from an energy-conserving and an energy-decaying scheme
are presented. The purpose of the presentation of this example here is twofold. First
of all, to the author’s knowledge, the (orthonormality constrained) director based for-
mulation of geometrically exact beams introduced in Betsch and Steinmann (2002)
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Fig. 6 Three-bar swing: snapshots of the motion and deformation (h = 5 · 10−4)

and Romero and Armero (2002) is used here in the framework of a variational
time-stepping scheme for the first time. This constrained formulation is beneficial
to the description of multibody dynamics consisting of rigid and elastic components,
see Betsch and Leyendecker (2006), Leyendecker et al. (2008a). Even though an
energy-momentum conserving time integration scheme is used there, the expressions
for the mass matrix corresponding to the spatial discretization of the beam by finite
elements, constraints, constraint Jacobian, and especially for the null space matrix
can be transformed according to the requirements of the variational schemes (14)
and (16) in a straightforward way. Different methods for the enforcement of the or-
thonormality constraints for the director triads have been compared in Leyendecker
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Fig. 7 Three-bar swing: axial
force and bending moment with
respect to an axis parallel to e1
in the element to the right of the
concentrated mass
(h = 5 · 10−4)

Table 2 Three-bar swing:
boundedness of velocity h max

tj∈{ti }Ni=0

∥∥u̇h(tj )
∥∥

10−2 21.264358970618083

5 · 10−3 21.502895414634740

10−3 29.211974341839312

5 · 10−4 29.414409469970764

10−4 28.986258982641335

5 · 10−5 28.970130936433204

10−5 28.964966706946093

et al. (2004, 2006) for rigid bodies and elastic beams, respectively. Secondly, the ex-
ample illustrates that Theorem 3.4 is applicable in the presence of highly nonlinear
elastic behavior where, despite the fact that the elastic energy is given by a fourth
order term in the configuration variables, V satisfies the quadratic energy bound
|V (s)| ≤ C(1 + |s|2) in a neighborhood of the constraint manifold M .

Both rigid bodies’ mass is 0.01 kg and they have the shape of pyramids with a
square ground face of edge length 0.02 m and the height of 0.36 m and 0.36

√
2 m,

respectively. A concentrated mass of M = 5 kg is rigidly connected at the midspan
node of the beam, which is discretized by 10 linear finite beam elements. The semi-
discrete beam’s response to loading is based on hyperelastic material behavior with
stiffness parameters GA = 175 480.7692 N, EA = 547 500 N, EI1 = 114.0625 N m2,
EI2 = 10.2656 N m2, and GJ = 13.7401 N m2. The sectional mass properties are
Aρ = 7500 kg m−1, M1

ρ = 1.5625 kg m and M2
ρ = 0.1406 kg m. The cross section

is oriented such that the smaller of the two bending stiffnesses is with respect to the
axis parallel to e1. (Note that the numbering of the bending stiffnesses corresponds to
the numbering of the nodal director triads which differ from the inertial frame.) The
loading is a triangular pulse in e2-direction which is applied at the midspan mass.
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It starts with 0 N at t = 0 s, peaks with 10 000 N at t = 0.125 s, and ends with 0 N at
t = 0.25 s.

Snapshots of the motion and deformation are depicted in Fig. 6. The elements’ col-
ors represent a linear interpolation of the sum of the resulting axial and shear forces
norm and the resulting bending and torsional moments norm. Thereby blue (dark
grey) represents zero and red (brighter grey) represents 4000. According to the load-
ing in axial direction of the beam, the axial forces dominate the stress resultants thus
the colors are representing the axial force distribution qualitatively. The evolution of
the axial force and bending moments with respect to the axis e1 in the element to the
right of the concentrated mass can be observed from Fig. 7. The left-hand diagram
in Fig. 8 reveals again the good energy behavior of the variational scheme. After the
vanishing of the external load, energy fluctuations are of the order of 10−4 for the
time step h = 5 · 10−4. The diagram on the right-hand side illustrates the orbit of the
concentrated mass in the (e2, e3)-plane. One can see clearly how the beam’s defor-
mation superposes the overall rigid motion of the multibody system. Boundedness of
the velocities can be observed from Table 2.
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