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Optimal Control Strategies for
Robust Certification1

We present an optimal control methodology, which we refer to as concentration-of-
measure optimal control (COMOC), that seeks to minimize a concentration-of-measure
upper bound on the probability of failure of a system. The systems under consideration
are characterized by a single performance measure that depends on random inputs
through a known response function. For these systems, concentration-of-measure upper
bound on the probability of failure of a system can be formulated in terms of the mean
performance measure and a system diameter that measures the uncertainty in the opera-
tion of the system. COMOC then seeks to determine the optimal controls that maximize
the confidence in the safe operation of the system, defined as the ratio of the design
margin, which is measured by the difference between the mean performance and the
design threshold, to the system uncertainty, which is measured by the system diameter.
This strategy has been assessed in the case of a robot-arm maneuver for which the
performance measure of interest is assumed to be the placement accuracy of the arm tip.
The ability of COMOC to significantly increase the design confidence in that particular
example of application is demonstrated. !DOI: 10.1115/1.4001375"

1 Introduction
The objective of this work is the development of an optimal

control methodology for the minimization of the probability of
failure of a system. Thus, we consider systems that are stochastic
and whose operation can succeed or fail with a certain probability.
In addition, the operation of the system depends on a certain set of
control variables. For these systems, the mathematical and com-
putational problems that we address concerns the determination of
optimal control laws that result in the least possible probability of
failure of the system.

Often, the probability of failure of a system—and its depen-
dence on the control variables—is not known. However, for cer-
tain classes of systems, upper bounds of the probability of failure
can be formulated—and computed—with some generality. For in-
stance, consider systems that are deterministic except for the ran-
domness of their inputs X. Suppose, in addition, that the safe
operation of the system requires that a certain performance mea-
sure Y be below a threshold a, and that the performance measure
depends on the inputs through a response function F#X$. Under
these assumptions, concentration-of-measure inequalities #cf. e.g.,
!1–3", Sec. 2 of this paper for a brief review$ provide convenient
upper bounds for the probability of failure of the system. These
upper bounds are attractive because they depend solely on two
quantities: the mean performance of the system and a system di-
ameter that measures the uncertainty in the operation of the sys-
tem. The computations of both parameters is straightforward, al-
beit possibly costly: the mean performance can be computed by
Monte Carlo sampling and the diameter by a global optimization

over the space of inputs. In lieu of an exact probability of failure,
we may instead seek optimal controls that minimize a probability
of failure upper bound, such as supplied by concentration-of-
measure inequalities. The proposed methodology, called
concentration-of-measure optimal control #COMOC$, is intro-
duced in Sec. 3. The resulting optimal controls then maximize the
design margin, i.e., the difference between the threshold and the
mean performance for safe operation, or reduce the uncertainty in
the operation of the system, as measured by the system diameter,
or both.

We assess the COMOC in a specific area of application: posi-
tioning accuracy in robotic-arm maneuvers, modeled as three-
dimensional systems of rigid bodies !4,5". The system is made
stochastic by first assuming that the lengths of various segments
of the arm are random, and second, that in addition, the system
experiences random forcing due to side wind. We investigate a
particular robot-arm maneuver whose successful operation re-
quires a minimum arm tip positioning accuracy, both by determin-
istic analysis of the nominal geometry of the system without wind
forces and by COMOC. For completeness, a brief account of the
discrete mechanics and optimal control for constrained systems
#DMOCC$ methodology employed in the deterministic calcula-
tions is included in Sec. 4. DMOCC is a direct transcription
method transforming the optimal control problem into a con-
strained optimization problem, where the boundary conditions and
the discrete equations of motion serve as equality constraints. In
particular, DMOCC is designed for mechanical systems whose
dynamics itself is holonomically constrained. The results of nu-
merical experiments are collected in Sec. 5. In the particular ex-
ample under consideration, COMOC reduces the concentration-
of-measure probability of failure upper bound by about one order
of magnitude with respect to the deterministic optimal control.

2 Concentration-of-Measure Inequalities for Uncer-
tainty Quantification and Certification

The application of concentration-of-measure inequalities for
uncertainty quantification and certification of engineering systems
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is relatively new !3". For completeness, we proceed to give a brief
account of concentration-of-measure inequalities as they bear on
the type of systems and applications under consideration here.

The goal is to certify whether a system is likely to perform
safely and reliably within the design specifications. Suppose that
the system operates safely if its performance measure Y !A!E is
in the admissible set A and is considered to fail if Y !Ac=E \A is
in the inadmissible set Ac, where E is an Euclidian space. For
systems characterized by a single performance measure, the ad-
missible set often is of the form A= #−! ,a", where a is the thresh-
old for the safe operation of the system. The system is certified
when the probability of failure P!Y !Ac" is less than a prespeci-
fied tolerance ", i.e., if

P!Y ! Ac" # " #1$
Often, however, the probability of failure of a system is not
known, and its direct computation, e.g., by Monte Carlo sampling,
is prohibitively expensive. Such is the case, for instance, of sys-
tems of large dimensionality for which failure is a rare event. In
these cases, rigorous certification can still be achieved if a prob-
ability of failure upper bound can be determined, namely, by re-
quiring that the probability of failure upper bound be less than the
tolerance ". For systems whose randomness can be characterized
by means of random inputs, a convenient class of upper bounds is
supplied by concentration-of-measure inequalities, which we
briefly summarize. A rigorous certification methodology can then
be formulated based on such concentration-of-measure inequali-
ties !3".

For present purposes, it suffices to assume that a perfect model
for the system’s response is available, i.e., a mathematical model
that describes the system exactly. In particular, errors stemming
from numerical approximations are neglected. For simplicity, we
restrict attention to the quantification of uncertainty of a single
performance measure Y !E and assume that the relation Y
=F#X$ describes the system exactly in terms of the random vector
X :$→%1& . . . &%M, where #$ ,U ,P$ is a probability space !6".
Let E!Y" denote the mean performance of the system and assume
that it belongs to the interior of A. Then, if F is integrable and the
input parameters are independent, McDiarmid’s inequality !7"
states that

P!Y − E!Y" ' − r" ' exp%− 2
r2

DF
2 & #2$

where r(0 and the diameter of the system is defined as

DF
2 = '

k=1

M

sup
X1,. . .,Xk−1,Xk+1,. . .,XM!X1&. . .Xk−1&Xk+1,. . .,&XM

& sup
#Ak,Bk$!Xk

2
(F#X1, . . . ,Ak, . . . ,XM$ − F#X1, . . . ,Bk, . . . ,XM$(2

#3$
Thus, the diameter is the sum of the maximum squared oscillation
in response from a random variable pair #independent and identi-
cally distributed$ varying in turn when all random variables are
allowed to vary over their entire ranges, and provides a measure
of the uncertainty in the operation of the system. Using r= #a
−E!Y"$+=max#0,a−E!Y"$, the bound #2$ can be rewritten as an
upper bound on the probability of failure

P!Y ! Ac" ' exp%− 2
#a − E!Y"$+

2

DF
2 & #4$

Often, however, the mean performance E!Y" is not known a priori
and must be estimated. For instance, the mean performance can be
estimated by performing m evaluations of the model F#X$ based
on unbiased Monte Carlo sampling of the input parameters, result-
ing in predicted performance measures Y1 , . . . ,Ym. The corre-
sponding mean performance estimate is

)Y* =
1
m'

i=1

m

Yi #5$

When the mean performance is estimated by sampling, the prob-
ability of failure can only be determined to within a predefined
estimation tolerance "! reflecting the randomness of )Y*. Specifi-
cally, if

) = DFm−1/2#− log "!$1/2

then, with probability 1−"!

P!Y ! Ac" ' exp%− 2
#a − )Y* − )$+

2

DF
2 & #6$

A rigorous certification criterion can now be obtained by requiring
that this bound be less than the probability of failure tolerance,
with the result

CF +
M

U
+

#a − )Y* − )$+

DF
(,log,1

"
#7$

Here M = #a− )Y*−)$+ may be interpreted as a design margin, U
=DF as a measure of the uncertainty in the operation of the sys-
tem, and CF as a confidence factor. Certification then requires the
confidence factor #CF$ to be in excess of the value ,log ,#1 /"$. It
is interesting to observe, comparing Eq. #6$ to Eq. #4$, that the
estimation of the mean performance reduces the margin by the
value ) to account for statistical deviations. This margin hit can
be reduced to an arbitrary small value by carrying out a suffi-
ciently large number of model evaluations.

It is instructive to compare the probabilities of failure bounds
obtained from concentration-of-measure inequalities with those
determined directly by random sampling. Consider an empirical
probability measure

*m =
1
m'

i=1

m

+Yi

obtained via traditional random sampling methods. Here

+Y = -1 for Y ! Ac

0 for Y ! A
.

Then Hoeffding’s inequality !8" gives

P!Y ! Ac" ' *m!Ac" +, 1
2m

log
1
"!

with probability 1−"!. This bound reveals that the number of
experiments required to certify a system based on statistical sam-
pling alone is of the order of #1 /2$"−2 log#1 /"!$. For computa-
tionally expensive models, the number of function evaluations
becomes restrictive and unreasonable as "! decreases. By contrast,
the diameter in the concentration-of-measure inequality #6$ is in-
dependent of ", which confers concentration-of-measure inequali-
ties a considerable advantage when failure is a rare event and the
required probability of failure is low.

3 Concentration-of-Measure Optimal Control
With this concept, to compute for probability of failure upper

bounds at hand, one can design the system such that confidence in
its safe operation is improved via COMOC.

Suppose that the system under consideration is a controlled
dynamical system with time-dependent states x : !t0 , tN"→Rnx and
controls " : !t0 , tN"→Rn,, where t! !t0 , tN"!R denotes the time
and N ,nx ,n, ,nh!N. Let the dynamical system be specified by

ẋ#t$ = ##x#t$,"#t$$

x#t0$ = x0 #8$

h#x#t$$ = 0
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with the smooth function # :Rnx &Rn,→Rnx, the initial value x0
!Rnx, and the path constraints h :Rnx→Rnh. In general, the quan-
tification of uncertainty of a performance measure Y and the cor-
responding CF are dependent on the complete system, i.e., on
x0 , # , h and ", and one could aim at improving the system such
that the probability of failure decreases. However, in many prac-
tical situations, one has to deal with the given system equations,
initial conditions, and path constraints, but can manipulate the
controls more easily. Therefore, we seek to determine the optimal
control laws that result in the least possible probability of failure
by identifying the objective function for optimal control with the
probability of failure P!Y -a". Often, however, the probability
P!Y -a" is not known explicitly. In these cases, we seek instead
to minimize a concentration-of-measure upper bound of the prob-
ability of failure such as Eq. #6$.

Indicate the dependence of the performance measure on a given
control law by Y,=F,#X$. Then one is faced with the following
optimal control problem:

min
"#·$

#− CF#"$$ + −
M,

U, + −
#a − )Y,* − ),$+

DF,
#9$

subject to Eq. #8$, where the system equations, initial conditions,
and path constraints serve as constraints for the optimization. Evi-
dently, by this choice of objective function the optimal control "
seeks to maximize confidence in the safe operation of the systems
either by increasing the placement margin M,, i.e., by decreasing
a− )Y,*, or by reducing the uncertainty U, of the maneuver, i.e.,
by reducing the diameter DF,, or both.

4 Discrete Mechanics and Optimal Control of Con-
strained Multibody Dynamics

The equations of motion of a controlled mechanical system
subject to holonomic constraints may be formulated in terms of
the states and controls by applying a constrained version of the
Lagrange–d’Alembert principle. DMOCC, a structure preserving
scheme for the optimal control of such systems, is derived in from
Refs. !4,5", using a discrete analog of that principle. Structure
preservation is inherited when the system is reduced to its mini-
mal dimension by the discrete null space method. Together with
the initial and final conditions on the configuration and conjugate
momentum, the reduced discrete equations serve as nonlinear
equality constraints for the minimization of a given objective
functional. The algorithm yields a sequence of discrete configura-
tions together with a sequence of actuating forces, optimally guid-
ing the system from the initial to the desired final state. In par-
ticular, for the optimal control of three-dimensional multibody
systems, a force formulation consistent with the joint constraints
is introduced in Ref. !5", and consistency of the evolution of mo-
mentum maps is proved for different types of joints. Ober-
Blöbaum et al. !9" focused on the analysis of discrete mechanics
and optimal control #DMOC in the unconstrained case$ and gives
a proof of convergence of the DMOC-solution to that of the origi-
nal #continuous$ optimal control problem.

In this section, the formulation of DMOCC is summarized
briefly. Then, it is described how the robot arm is modeled as a
spatially fixed spherical pair, and a short overview on the main
ingredients for the optimal control of the robot arm is given. Fi-
nally, DMOCC will be used to determine a cost minimizing robot-
arm maneuver in the deterministic setting.

4.1 DMOCC. The equations of motion for forced, holonomi-
cally constrained systems can be derived via a variational prin-
ciple. Quite different strategies for the treatment of the constraints
are at the disposal. One possibility described for conservative sys-
tems in Ref. !10" is to transform the differential algebraic equa-
tions #DAEs$ by a null space method with reparameterization.
Analogous steps can be performed in the temporal discrete varia-
tional setting to derive the forced constrained discrete Euler–

Lagrange equations and their reduction to minimal dimensions.
Again, these steps have been investigated in detail in Ref. !10" for
conservative systems and in Ref. !5" for forced systems, and the
method is summarized here.

Consider an n-dimensional mechanical system with the time-
dependent configuration vector q#t$!Q and velocity vector q̇#t$
!Tq#t$Q in the tangent space Tq#t$Q to the configuration manifold
Q. Let the configuration be constrained by the function g#q$=0
!Rm with constraint manifold C= /q!Q (g#q$=00 and influenced
by the force field f :Rn−m&TQ→T!Q.

Corresponding to the configuration manifold Q, the discrete
phase space is defined by Q&Q, which is locally isomorphic to
TQ. For a constant time-step h!R, a path q : !t0 , tN"→Q is re-
placed by a discrete path qd : /t0 , t0+h , . . . , t0+Nh= tN0→Q #N
!N$, where qn=qd#tn$ is viewed as an approximation to q#tn$ at
tn= t0+nh. The action integral is approximated in a time interval
!tn , tn+1" using the discrete Lagrangian Ld :Q&Q→R and the dis-
crete constraint function gd :Q→R. Similarly, $n=$d#tn$ approxi-
mates the Lagrange multiplier, while the force field f is approxi-
mated by two discrete forces fn

− , fn
+ :T!U&Q→T!Q.

4.1.1 Discrete Constrained Lagrange–d’Alembert Principle.
The discrete version of the constrained Lagrange–d’Alembert
principle requires the discrete path /qn0n=0

N and multipliers /$n0n=0
N

to fulfill

+'
n=0

N−1 %Ld#qn,qn+1$ −
1
2

gd
T#qn$ · $n −

1
2

gd
T#qn+1$ · $n+1& + '

n=0

N−1

#fn
− · +qn

+ fn
+ · +qn+1$ = 0

for all variations /+qn0n=0
N and /+$n0n=0

N with +q0=+qN=0, which is
equivalent to the constrained forced discrete Euler–Lagrange
equations

D2Ld#qn−1,qn$ + D1Ld#qn,qn+1$ − Gd
T#qn$ · $n + fn−1

+ + fn
− = 0

#10$
g#qn+1$ = 0

for n=1, . . . ,N−1, where Gd#qn$ denotes the Jacobian of gd#qn$
and D)Ld denotes the derivative of the discrete Lagrangian with
respect to the )th variable. Due to the variational derivation of
this scheme, the discrete trajectory conserves a discrete symplec-
tic form and is consistent in momentum maps, i.e., any change in
the value of a momentum map reflects exactly the applied forces
!11". Furthermore, the solution shows “good energy behavior” in
the sense that energy is not gained or dissipated numerically,
which is typical for symplectic methods !12".

4.1.2 The Discrete Null Space Method. To eliminate the dis-
crete constraint forces from the equations, a discrete null space
matrix fulfilling range #P#qn$$=null#Gd#qn$$ is employed. Pre-
multiplying #10$1 by the transposed discrete null space matrix
cancels the constraint forces, i.e., the Lagrange multipliers are
eliminated from the set of unknowns, and the system’s dimension
is reduced to n.

4.1.3 Nodal Reparameterization. A reduction in the system to
the minimal possible dimension can be accomplished by a local
reparameterization of the constraint manifold. At the time nodes,
qn=F#un ,qn−1$ is expressed in terms of the discrete generalized
coordinates un!U%Rn−m by the map F :U%Rn−m&Q→C, such
that the constraints are fulfilled. The discrete generalized control
forces are assumed to be constant in each time interval #see Fig.
1$. First of all, the effect of the generalized forces acting in
!tn−1 , tn" and !tn , tn+1" is transformed to the time node tn via "n−1

+

= #h /2$"n−1 and "n
−= #h /2$"n. Second, the components of the dis-

crete force vectors fn−1
+ , fn

−!Tqn

! Q can be calculated as
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fn−1
+ = BT#qn$"n−1

+ fn
− = BT#qn$"n

−

with the n& #n−m$ configuration dependent input transformation
matrix BT :T!U→T!Q.

Upon insertion of the nodal reparameterization, the resulting
scheme

PT#qn$!D2Ld#qn−1,qn$ + D1Ld#qn,F#un+1,qn$$ + fn−1
+ + fn

−" = 0

#11$
has to be solved for un+1, where qn+1 is obtained from local repa-
rameterization F of the constraint manifold. Note that the locality
of this reparameterization avoids the danger of singularities,
which is present in formulations that start with a Lagrangian in
generalized coordinates. The reduced scheme #11$$ is equivalent
to the constrained scheme #10$; thus, it also has the key properties
of exact constraint fulfillment, symplecticity, and momentum con-
sistency. While the constrained scheme #10$ becomes increasingly
ill-conditioned for decreasing time-steps, the condition number of
Eq. #11$ is independent of the time-step.

4.1.4 Boundary Conditions. In the next step, the boundary
conditions q#t0$=q0 and q̇#t0$= q̇0, and q#tN$=qN and q̇#tN$= q̇N

are formulated in the discrete setting. Let q00!C be a fixed ref-
erence configuration, relative to which the initial configuration is
computed as q0=F#u0 ,q00$. To prescribe an initial configuration
at t0, one can request u0=u0. However, since the relative reparam-
eterization computes for qN in terms of uN and qN−1, prescribing
uN does not enforce a unique final configuration. Final configura-
tion conditions have to be formulated in terms of qN depending on
the specific system under consideration #see Sec. 4.2.1 for an ex-
ample$. Since in the present formulation of constrained forced
discrete variational dynamics on Q&Q, wherein velocities are not
properly defined, velocity conditions have to be transformed into
conditions on the conjugate momentum, which are defined at each
and every time node using a discrete Legendre transform. Three
different discrete Legendre transforms have been defined in Ref.
!5". The reduced discrete Legendre transforms are the most appro-
priate version to formulate the boundary conditions on the mo-
mentum level as

PT#q0$!D2L#q0, q̇0$ + D1Ld#q0,q1$ + f0
−" = 0

#12$
PT#qN$!D2L#qN, q̇N$ − D2Ld#qN−1,qN$ − fN−1

+ " = 0

Here, the continuous Legendre transforms p0=D2L#q0 , q̇0$ and
pN=D2L#qN , q̇N$ are applied to the prescribed boundary velocities.

4.1.5 The Discrete Constrained Optimization Problem. To for-
mulate the optimal control problem for the constrained discrete
motion, an approximation

Jd#ud,"d$ = '
n=0

N−1

Bd#un,un+1,"n$ #13$

of the continuous objective functional J#q , q̇ , f$=1t0
tNB#q , q̇ , f$dt

has to be defined, where B#q , q̇ , f$ :TC&T!Q→R is a given cost
function. The objective function #13$ has to be minimized with
respect to ud= /un0n=0

N and "d= /"n0n=0
N−1 subject to a minimal set of

(b)

(a)

Fig. 2 Configuration of a rigid body „a… and initial configuration of the robot
arm consisting of two rigid bodies combined into a spherical pair by the
joint S1 and fixed in space by the spherical joint S2 „b…

Fig. 1 Relation of redundant forces fn−1
+ , fn

− at tn to piecewise
constant discrete generalized forces "n−1 , "n
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initial and final configuration constraints, initial and final momen-
tum constraints #Eq. #12$$, and discrete equations of motion #Eq.
#11$$ for n=1, . . . ,N−1. Furthermore, time-dependent path, con-
straints prescribing #parts of$ the motion, and inequality con-
straints bounding the optimization variables can be present.

Remark 4.1 (Dimension of the constrained optimization prob-
lem). The use of the discrete null space method with nodal repa-
rameterization yields a constrained optimization problem of mini-
mal possible dimension: the optimization of Eq. #13$ subject to
the boundary conditions and Eq. #11$ includes the #2N+1$#n
−m$ variables ud , "d and #N+3$#n−m$ constraints. In contrast to
that, the constrained optimization problem resulting from the
Lagrange multiplier formulation #Eq. #10$$ involves the N#2n
+m$+n unknowns qd , fd , $d and #N−1$#n+m$+4n constraints
#this are #3N+1$m more variables and #N+1$2m more con-
straints$. Of course, this influences the computational costs and
the spectrum of available methods to solve the problem substan-
tially.

4.2 Deterministic Optimal Control of the Robot Arm. This
section describes the constrained formulation of the cranelike ro-
bot arm and its optimal control using DMOCC to compute for the
optimal trajectory and control sequence steering the arm from its
initial position, as depicted in Fig. 2 #right$, to the final position,
where the tip is located in xH, as shown in Fig. 3. The objective of

this rest to rest maneuver is the minimization of the control effort
Jd#ud ,"d$='n=0

N−12"n22. The robot-arm model consists of two rigid
bodies and two spherical joint connections, the first body being a
cone and the second body being a cylinder #see Fig. 2, right$. The
first spherical joint S1 connects the two bodies by preventing rela-
tive translation. However, relative rotation of the bodies is not
constrained. The second joint S2 fixes the end of the cylinder in
space at xG.

In contrast to rotation based approaches to rigid body dynamics
taken from Refs. !13,14", here, each rigid body is viewed as a
constrained continuum, which is described in redundant coordi-
nates subject to holonomic constraints !15,16". The )th rigid
body’s configuration variable

q) = 3
&)

d1
)

d2
)

d3
)
4 ! R12 ) = 1,2 #14$

consists of the placement of the center of mass &)!R3 and the
directors dI

)!R3 #I=1,2 ,3$, which are constrained to stay ortho-
normal during the motion #see Figs. 2 and 3, left$. The equations
of motion assume the form of DAEs with a constant mass matrix.
This formulation circumvents many difficulties associated with

(b)

(a)

Fig. 3 Final configuration of the robot arm showing the director triads ˆdI
'‰

„'=1,2, I=1,2,3… „a… and the joint location vectors ()
' „)=1,2… „b…
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rotational parameters !17,18" and can be generalized easily to
three-dimensional multibody systems consisting of many rigid
bodies and also elastic structural elements !19,20". The location of
the .th joint in the )th body is characterized by coordinates #/.

)$i

in the body frame /dI
)0, where ) ,.=1,2 #see Fig. 3, right$

(.
) = #/.

)$idi
)

4.2.1 Null Space Matrix. The null space matrix associated
with the robot arm is given by

P#q$ = 3
(1

1̂ (2
2̂ − (2

1̂

− d1
1̂ 0

− d2
1̂ 0

− d3
1̂ 0

0 (2
2̂

0 − d1
2̂

0 − d2
2̂

0 − d3
2̂

4
with the hat map ˆ:R3→so#3$ and 0 denoting the 3&3 zero ma-
trix.

4.2.2 Nodal Reparameterization. Let *n+1
1 and *n+1

2 represent
the incremental rotation vectors pertaining to the two bodies. In
particular, the nodal reparameterization reads

qn+1 = 3
xG + exp#*n+1

2̂ $#− #!2
2$n + #!1

2$n$ − exp#*n+1
1̂ $#!1

1$n

exp#*n+1
1̂ $#d1

1$n

exp#*n+1
1̂ $#d2

1$n

exp#*n+1
1̂ $#d3

1$n

xG − exp#*n+1
2̂ $#!2

2$n

exp#*n+1
2̂ $#d1

2$n

exp#*n+1
2̂ $#d2

2$n

exp#*n+1
2̂ $#d3

2$n

4
Rodrigues’ formula is used to obtain a closed form expression of
the exponential map exp:so#3$→SO#3$, mapping skew-
symmetric matrices to proper rotations !21".

4.2.3 Actuation of the Robot Arm. The actuation of the arm is
twofold. First of all, the spherical joint connection S1 is actuated
by the joint torque "01

!R3. It affects both bodies, where accord-
ing to “action equals reaction,” the resulting generalized forces on
the bodies are equal, but opposite in sign !22". Second, the torque
"02

!R3 actuates S2 and affects the second body only.
The redundant forces on the bodies’ center of mass and the

directors corresponding to the configuration variable #Eq. #14$$
can then be computed as

f = 5f1

f2 6 = BT#q$5"01

"02

6
with the 24&6 input transformation matrix

BT#q$ =3
0 0

1
2

d1
1̂ 0

1
2

d2
1̂ 0

1
2

d3
1̂ 0

0 0

−
1
2

d1
2̂ 1

2
d1

2̂

−
1
2

d2
2̂ 1

2
d2

2̂

−
1
2

d3
2̂ 1

2
d3

2̂

4
Angular momentum of the robot arm reads L= '

)=1

2

&)&p&
) +dI

)

&pI
), where the summation convention is used to sum over the

repeated index I. In the discrete setting, the angular momentum at
tn can be computed in terms of the conjugate momenta obtained
via the constrained discrete Legendre transform, or equivalently,
via the projected discrete Legendre transform !5".

In the present case of the robot arm, the change in angular
momentum is induced by "02

and the force due to the gravitational
potential

V#q$ = !00 − M1
1g01&900M1

2g01&9"q

with the acceleration g!R and the total masses M1
) #)=1,2$ of

the bodies. In particular, the change in angular momentum in one
time interval is given by

Ln+1 − Ln = #"02
$n

+ + #"02
$n

− − #&n+1
1 + &n

1$ &
h

2
!00 − M1

1g" − #&n+1
2

+ &n
2$ &

h

2
!00 − M1

2g" #15$

The consistency of the momentum maps can be proven analyti-
cally and is illustrated numerically in Fig. 4.

4.2.4 Robot-Arm Maneuver in the Deterministic Setting. The
particular robot arm we consider consists of a cone of radius r1

=0.05 length l1=0.6, and mass M1
1 =10, and a cylinder of radius

r2=0.05, length l2=0.5, and mass M1
2 =5. One end of the cylinder

is fixed in space at xG= !000" by the spherical joint S2, while the
other end is coupled to the cylinder via S2. In the reference con-
figuration q00 depicted in Fig. 2 #right$, both bodies are tilted from
a vertical position by a rotation of 2 /4 around the axis e1. The
directors are aligned with the bodies’ principal axes of inertia such
that d3

) coincides with the longitudinal axis.
At the start of the maneuver, the initial configuration must co-

incide with the reference configuration; thus, q0=q00 and the ini-
tial configuration condition for the optimal control problem reads
u0=06&1. In the final configuration, the tip of the cone must co-
incide with a prescribed location xH= !0−1.131 0.283" in space.
Using the vector (H

1 specifying the location of the tip in the body
frame /dI

10 #see Fig. 3, right$, the final configuration condition
reads &N

1 + #(H
1 $N−xH=03&1. The desired motion is a rest to rest

maneuver; thus, p0=pN=024&1 in the boundary conditions on the
momentum level #Eq. #12$$. In the deterministic setting, the ob-
jective function #13$ represents the control effort; therefore, the
convex objective function Jd#ud ,"d$='n=0

N−12"n22 is minimized sub-
ject to the described boundary conditions and the discrete equa-
tions of motion #Eq. #11$$. Furthermore, bound constraints insure
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that the components of the applied torques are in the range of
−120' ##,0)

$i$n'120, where )=1,2 , i=1,2 ,3 and n=0, N−1.
The maneuver takes place in tN=1.5, and N=15 time-steps of size
h=0.1 are used.

The left hand plot in Fig. 4 shows the evolution of the kinetic,
potential, and total energies. In particular, the first plot illustrates
that the maneuver starts and ends at rest. The evolution of the
components of angular momentum is shown on the right hand
side. The bottom plot verifies Eq. #15$ numerically #note that
#"n

++"n
−$ in the plot represents the entire right hand side of Eq.

#15$$. The evolution of the components of the torques in each joint
can be observed from Fig. 5 #left$. As described before, the
torques are constant in each time interval. Finally, the resulting tip
trajectory is depicted in Fig. 5 on the right hand side.

Remark 4.2 (Implementation). The constrained minimization
has been performed by the SQP solver FMINCON in MATLAB, which
can handle bound constraints on the optimization variables as well
as linear and nonlinear equality and inequality constraints. The
gradient of the objective function and the Jacobian of the nonlin-
ear equality constraints have been derived analytically, and are

given as user-supplied derivatives to MATLAB. This substantially
reduces the computational costs compared with the case when
MATLAB approximates the derivatives via finite differencing.

Remark 4.3 (Inequality constraints). No inequality constraints
have been imposed on the minimization in this simulation. To
obtain more realistic maneuvers, it is necessary to prevent inter-
penetration of the two bodies via appropriate inequality con-
straints. This is left for future work.

5 Test Case: Minimizing the Probability of Failure for
a Robot-Arm Maneuver

In this section, the deterministic robot-arm maneuver from Sec.
4.2.1 is reconsidered in the presence of uncertainty. Specifically,
we consider two different uncertainty cases. First, there is uncer-
tainty in the geometry of the robot arm, i.e., the lengths l1 and l2

are uncertain. Second, uncertain operating conditions are repre-
sented by the presence of uncertain wind forces in addition to the
uncertain lengths. In all calculations we use the reduced varia-
tional time-stepping scheme #11$ obtained via the discrete null
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Fig. 4 Evolution of the kinetic, potential, and total energies „a… and compo-
nents of the angular momentum „b…. The bottom plot on the right shows that
the momentum maps are represented consistently.
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space method with nodal reparameterization. By design, this
scheme is symplectic and represents changes in the momentum
maps exactly. Furthermore, energy is not gained or dissipated nu-
merically. As it is typical for the integration of constrained dy-
namics, the discrete equations of motion are implicit and need to
be solved iteratively, e.g., by means of a Newton–Raphson itera-
tion.

The performance measure Y of interest is assumed to be the
placement accuracy of the arm tip, i.e., the distance from the arm
tip and its prescribed location xH at the end of the maneuver’s
duration of tN=1.5. Thus, in this case Y,d = 2&N

1 + #(H
1 $N−xH2 is

obtained for a candidate control sequence "d by stepping forward
in time using Eq. #11$ and the initial conditions described in Sec.
4.2.1. From an optimal control point of view, this is similar to a
shooting approach to solve the concentration-of-measure optimal
control problem #Eq. #9$$. We additionally suppose that a position-
ing accuracy a is prescribed, so that the robot arm operates safely
if Y 'a and fails if Y -a. The goal is to find a control sequence "d
for which the confidence in safe operation is maximal, i.e., the
resulting objective function to be minimized is

− CF#"d$ + −
M,d

U,d
+ −

#a − )Y,d* − ),d$+

DF,d

#16$

The evaluation of the objective function #16$ requires the evalua-
tion of the mean response and the diameter. In all calculations
presented here, the mean response #Eq. #5$$ is computed by ran-
dom Monte Carlo sampling, and the system diameter #Eq. #3$$ and
optimal controls "d are computed by simulated annealing. The
basic simulated-annealing algorithm is that described in Ref. !23"
and has been enhanced with several user-specified options to suit
our needs. Details may be found in the Appendix. The starting

controls for the iteration are set to the deterministic controls com-
puted in Sec. 4.2.1.

5.1 Uncertain Geometry. First, there are M =2 uncertain
variables. Length l1 can vary randomly in a range of 5% and l2

varies randomly in the range of 0.1% around the given value.
These values assure that their influence on the system’s uncer-
tainty is of the same order of magnitude.

The evolution of the mean performance, system diameter, and
concentration-of-measure probability of failure upper bound along
the simulated-annealing iteration for the determination of the op-
timal controls is shown in Fig. 6. As expected, both the position-
ing accuracy of the maneuver, which is measured by the mean
response )Y* with m=100, and the uncertainty in the operation of
the maneuver, which is measured by the diameter DF, show a
decreasing tendency. Correspondingly, the concentration-of-
measure probability of failure upper bound decreases from ini-
tially P=0.49 to Pbest=0.013722. This reduction in the probability
of failure may be alternatively interpreted as an increase in the
confidence that may be placed in the safe operation of the maneu-
ver, as measured by the confidence factor #Eq. #7$$. Recall that the
right hand side of Eq. #6$ is a random variable, and with probabil-
ity at most "!, it may fail to be an upper bound on the probability
of failure. This is why, for the optimal control sequence with
Pbest=0.013722 computed via Eq. #6$ #using the empirical mean,
which is subject to large deviations as rare events$, the mean has
been recomputed with m=10000. Assuming that the latter empiri-
cal mean is an “accurate” approximation of the exact mean in Eq.
#4$ results in the even lower probability of failure bound Pbest
=0.00047207.
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Fig. 5 Evolution of the torques „a… and trajectory of the tip „b…
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It bears emphasis that high confidence in the safe operation of a
system requires achieving a large design margin and a low uncer-
tainty simultaneously. More precisely, confidence requires that the
design margin be large in relation to the uncertainty in the opera-
tion of the system, which underscores the importance of
quantifying—and mitigating by means of optimal control—
system uncertainties for purposes of certification. Here, again, the
ability of COMOC to increase the design confidence in the par-
ticular example of the robot-arm maneuver becomes obvious.

5.2 Uncertain Wind Forces and Geometry. Second, in
addition to the uncertain lengths, each body is affected by a ran-
dom wind force in every time-step, hitting the body’s surface
around the center of mass in a prescribed location. Each compo-
nent of the two three-dimensional force vectors varies randomly
between in !30.001, 0.001". Altogether, M =92 uncertain vari-
ables are present in this simulation. Figure 7 shows the evolution
of the mean performance with m=100, system diameter, and

concentration-of-measure probability of failure upper bound along
the simulated-annealing iteration. The probability of failure upper
bound has been improved from P=1 to Pbest=0.11581. Also, here,
it can be observed that the Pbest has been found for a control
sequence that leads to #local$ minima in the mean and diameter,
respectively. Again, assuming that the mean resulting from m
=10000 samples yields exactly the mean performance, Eq. #4$
bounds the probability of failure by Pbest=0.0567

6 Summary and Conclusions
We have presented an optimal control methodology, which we

refer to as COMOC, that seeks to minimize the concentration-of-
measure upper bound on the probability of failure of a system.
The systems under consideration are characterized by a single
performance measure that depends on random inputs through a
known response function. In addition, the safe operation of the
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Fig. 6 Uncertain geometry: simulated-annealing iteration for
the determination of the optimal controls; evolution of the „a…
mean performance, „b… system diameter, and „c… concentration-
of-measure probability of failure upper bound
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Fig. 7 Uncertain wind forces and uncertain geometry:
simulated-annealing iteration for the determination of the opti-
mal controls; evolution of the „a… mean performance, „b… sys-
tem diameter, and „c… concentration-of-measure probability of
failure upper bound
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system is characterized by a threshold value of the performance
measure. For these systems, a concentration-of-measure upper
bound on the probability of failure of a system can be formulated
in terms of the mean performance measure and a system diameter
that measures the uncertainty in the operation of the system. CO-
MOC then seeks to determine optimal controls that maximize the
confidence in the safe operation of the system, defined as the ratio
of design margin, which is measured by the difference between
the mean performance and the design threshold, to the system
uncertainty, which is measured by the system diameter. This strat-
egy has been assessed in the case of a robot-arm maneuver for
which the performance measure of interest is assumed to be the
placement accuracy of the arm tip. The ability of COMOC to
increase the design confidence in that particular example of appli-
cation is remarkable and bodes auspiciously for the approach.

The most severe limitation of the COMOC implementation pre-
sented in this paper is its computational expense. Each evaluation
of the confidence factor objective function requires the calculation
of the mean response and system diameter for a particular control,
which, in turn, requires multiple solutions of the equations of
motion of the system. In order to reduce the computational ex-
pense to a tractable level, in the calculations presented here, the
controls have been constrained to remain close to the initial de-
terministic solution. It is conceivable that further gains in the de-
sign confidence could be achieved from an unrestricted control
optimization, but the computational resources and infrastructure
required for such an optimization are beyond the scope of this
paper. In view of these present limitations, the formulation of
efficient COMOC implementations that alleviate its computational
expense clearly suggests itself as a subject of further research.
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Appendix: Optimization Algorithm
The basic simulated-annealing algorithm is that described in

Ref. !23" and has been enhanced with several user-specified op-
tions to suit our needs. Define T as “temperature” and N as the
number of function evaluations. We use a default cooling schedule
of Tnew=0.8&Told with T0=1.0. The optimization stops if T
'1.0&10−8, N-Nmax=2000, or NR-300, where NR is the num-
ber of successive rejected states. Temperature decrease happens if
NT-30 or NS-20, i.e., if 30 function evaluations are made, or if
there are 20 successive accepted optimal states found at the cur-
rent temperature. The Boltzmann constant is set to 1.0.

The bound constraints on the random variables need to be sat-
isfied in the optimization algorithm as well. The neighbor-finding
routine intelligently seeks out neighboring states that assert com-
pliance of any permutations of these constraints to find a new

neighbor by projecting a randomly generated neighbor into a pa-
rameterized point within the constrained design space.

References
!1" Ledoux, M., 2001, The Concentration of Measure Phenomenon, American

Mathematical Society, Providence, RI.
!2" Boucheron, S., Bousquet, O., and Lugosi, G., 2004, “Concentration inequali-

ties,” Advanced Lectures in Machine Learning, O. Bousquet, U. V. Luxburg,
and G. Rätsch, eds., Springer, New York, pp. 208–240.

!3" Lucas, L., Owhadi, H., and Ortiz, M., 2008, “Rigorous Verification, Validation,
Uncertainty Quantification and Certification Through Concentration-of-
Measure Inequalities,” Comput. Methods Appl. Mech. Eng., 197, pp. 4591–
4609.

!4" Leyendecker, S., Ober-Blöbaum, S., Marsden, J., and Ortiz, M., 2007, “Dis-
crete Mechanics and Optimal Control for Constrained Multibody Dynamics,”
Proceedings of the Sixth International Conference on Multibody Systems,
Nonlinear Dynamics, and Control, ASME International Design Engineering
Technical Conferences, Las Vegas, NV, Sept. 4–7.

!5" Leyendecker, S., Ober-Blöbaum, S., Marsden, J., and Ortiz, M., 2009, “Dis-
crete Mechanics and Optimal Control for Constrained Systems #DMOCC$,”
Opt. Control Appl. Methods, in press.10.1002/oca.912

!6" Lawrence, C., 2004, “An Introduction to Stochastic Differential Equations
Version 1.2,” University of California at Berkeley, available online at http://
math.berkely.edu/~evans/SDEcourse.pdf

!7" McDiarmid, C., 1989, “On the Method of Bounded Differences,” Surveys in
Combinatorics (London Mathematical Society Lecture Note Series), Cam-
bridge University Press, Cambridge, England, Vol. 141, pp. 148–188.

!8" Hoeffding, W., 1963, “Probability Inequalities for Sums of Bounded Random
Variables,” J. Am. Stat. Assoc., 58, pp. 13–30.

!9" Ober-Blöbaum, S., Junge, O., and Marsden, J., “Discrete Mechanics and Op-
timal Control: An Analysis,” ESAIM: Control Optimisation and Calculus of
Variations, in press.

!10" Leyendecker, S., Marsden, J., and Ortiz, M., 2008, “Variational Integrators for
Constrained Dynamical Systems,” Z. Angew. Math. Mech., 88#9$, pp. 677–
708.

!11" Marsden, J., and West, M., 2001, “Discrete Mechanics and Variational Inte-
grators,” Acta Numerica, 10, pp. 357–514.

!12" Hairer, E., Wanner, G., and Lubich, C., 2004, Geometric Numerical Integra-
tion: Structure-Preserving Algorithms for Ordinary Differential Equations,
Springer, New York.

!13" Krysl, P., 2005, “Direct Time Integration of Rigid Body Motion With Discrete-
Impulse Midpoint Approximation: Explicit Newmark Algorithms,” Commun.
Numer. Methods Eng., 22#5$, pp. 441–451.

!14" Bou-Rabee, N., and Marsden, J., 2009, “Hamilton-Pontryagin Integrators on
Lie Groups: Introduction and Structure-Preserving Properties,” Found Com-
put. Math., 9#2$, pp. 197–219.

!15" Antmann, S., 1995, Nonlinear Problems in Elasticity, Springer, New York.
!16" Reich, S., 1996, “Symplectic Integrators for Systems of Rigid Bodies,” Fields

Inst. Commun., 10, pp. 181–191.
!17" Betsch, P., Menzel, A., and Stein, E., 1998, “On the Parametrization of Finite

Rotations in Computational Mechanics: A Classification of Concepts With Ap-
plication to Smooth Shells,” Comput. Methods Appl. Mech. Eng., 155, pp.
273–305.

!18" Bauchau, O., and Trainelli, L., 2003, “The Vectorial Parameterization of Ro-
tation,” Nonlinear Dyn., 32#1$, pp. 71–92.

!19" Betsch, P., and Leyendecker, S., 2006, “The Discrete Null Space Method for
the Energy Consistent Integration of Constrained Mechanical Systems. Part II:
Multibody Dynamics,” Int. J. Numer. Methods Eng., 67#4$, pp. 499–552.

!20" Leyendecker, S., Betsch, P., and Steinmann, P., 2008, “The Discrete Null
Space Method for the Energy Consistent Integration of Constrained Mechani-
cal Systems. Part III: Flexible Multibody Dynamics,” Multibody Syst. Dyn.,
19, pp. 45–72.

!21" Marsden, J., and Ratiu, T., 1994, Introduction to Mechanics and Symmetry. A
Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathemat-
ics, Springer, New York, Vol. 17.

!22" Bullo, F., and Lewis, A., 2004, Geometric Control of Mechanical Systems,
Springer, New York.

!23" Kirkpatrick, S., Gelatt, C., Jr., and Vecchi, M., 1983, “Optimization by Simu-
lated Annealing,” Science, 220#4598$, pp. 671–680.

031008-10 / Vol. 5, JULY 2010 Transactions of the ASME

Downloaded 30 May 2010 to 131.215.225.9. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


