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ABSTRACT

We study the dynamics and locomotion of a neutrally-
buoyant deformable body that can undefipite shape deforma-
tions and is immersed in a perfect and incompressible fluiel. W
model the body as a constrained Cosserat beam, more prgcisel
a Kirchhoff beam, and we derive the equations governingds m
tion in potential flow where the ambient fluid is accounted for
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In this paper, we model the effect of the internal resistance
to bending using a Cosserat beam theory with uniform bending
rigidity (see [8] for an alternative model) and hyperelastiate-
rial behavior (see, e.g., [9]). More precisely, we use a Iaff
beam to model the fish, since it fulfils the condition of consta
volume automatically. We assume that the beam is submerged
in an infinite volume of inviscid, incompressible fluid. A re-

using the added mass effect. We show that the submerged beamduced formulation of the dynamics of the beam that does not

can undergo net locomotion due to applied torsional loading
its centerline.

1 INTRODUCTION
Early efforts in developing mathematically-sound modéls o
swimming can be attributed to the work of Lighthill and Wu,

see, e.g., [1,2]. Interest re-emerged over the past fewsyear

explicitly incorporate the ambient fluid is derived. The erig-

ing assumption is that the motion of the beam does not generat
circulation in the fluid. This formulation is most suited fibve
analysis of aquatic animals that move at large Reynolds eusnb
with propulsive movements analogous to those of carangifor
and thunniform fish (which move by deforming their bodies in
the direction transverse to their swimming motion). Fish ey-
ulate their buoyancy and remain approximately neutrallgybu

understand the mechanics of fish swimming and thereby enableant when swimming in a plane perpendicular to the direction o

novel engineering applications such as the design of bicédlg-
inspired vehicles. A model for fish swimming is presentedijn [

gravity. Hence, it is a reasonable first step to model the fish a
neutrally buoyant beam.

where the fish is considered to be an articulated body whose

shape (i.e., the relative angles between the links forntiegat-
ticulated body) is controlled or given as a function of tinfde
internal work required for the body to perform such deforma-
tions was neglected. However, it is known that the fish body pr
vides considerable resistance to bending and evidends éxéat
the elastic properties of the fish body are tuned to hydroayoa
forces (see, e.qg., [4-7]).

*Address all correspondence to this author.

The organization of this paper is as follows. We present the
Cosserat beam model in Section 2 and the fluid model in Sec-
tion 3. In Section 4, we discretize the beam and derive an ex-
pression for the kinetic energy of the fluid in terms of #ueled
massesand the configuration and velocity variables of the dis-
cretized beam. In Section 5, we consider planar motionsef th
beam and in Section 6 we discuss swimming motions of the pla-
nar beam subject to prescribed torsional loading on itsscéné.

The main findings are summarized in Section 7.
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The strain energy density functiéi(I",K) is expressed in
terms of the objective strain measures

or
rq=rie, ri=d-: 6_5_6i3’
(4)

1 od; od;
K(q) =Kie, K= SEilk (dk' a_sJ — (dk- a—sj)h—o) :

whereg;;j is the Kronecker delta angly the alternating symbol.
An interpretation of these strain measures can be found]in [9
whereupori'; andl"; measure shear strairsg elongation Ky
andK; quantify flexure andz torsion. The constitutive equa-

Figure 1. CONFIGURATION OF A BEAM WITH RESPECT TO AN OR-

THONORMAL FRAME {€ } FIXED IN SPACE. tions
oW oW
2 COSSERAT BEAM V= MT
The description of geometrically exact Cosserat beams re-
lies on the kinematic assumption illustrated in Fig. 1, ttiest define the resulting shear forces,v, and axial forcevz and
placement of a material point in the inertial fraf® }, which is the resulting bending momenta, |, and torsional momenis
identified by its position vectdX () € 8o C R® in the reference respectively.
configurationsg, can be described by The kinetic energyf; of the deformable body is indepen-
dent ofds. This can be readily verified by differentiating Egn. (1)
X(Zi,s,t) = r(st) +di(s,t) (1) in time and noting that the sum over the repeated index ca@pri

i = 1,2. The kinetic energy,; can be written as

see, e.g., [9] or [10]. Note that the sum over the repeated in-

dex comprises = 1,2 and the spatial extension of the beamin 1, — 1 /kl (F- (psA)F +dp-(pgli)dy+do- (p$|2)d2)ds
the longitudinal direction is accounted for by the paraisatr 2 Js=0 (5)

. . _ 3 . . oy
tion ins Here((1,{3,{3 = s) € R”is a triple of curvilinear wherep, is the density of the body (assumed to be uniforis
coordinates withs € [0,L] C R being the arc-length of the line . L

. 3 . . the cross-sectional arda,andl, are the area moments of inertia
of centroidsr(s,0) € R* in the reference configuration{d, } .

. . . of the cross-section.

represent an orthonormal triad. The directdrést),i = 1,2, . . . .

L . . . ; Kirchhoff beam theory is a special case of the geometrically
span a principal basis of the cross-sectios ahd timet which . .
; . . exact Cosserat beam theory which assumes that the beam is un-
is accordingly assumed to stay planar for all time. In the ref . . . .

shearable and inextensible, thus it undergoes pure bemditg

erence configuratio is tangent to the central ling(s,0 ) : : . ;
> config nds ang ' .( 0) . torsion and™ defined in Eqn. (4) is constrained to be zero every-
but this is not necessary in a deformed configuration. This . - . I
where at all times. This is equivalent to the condition that

allowance of transverse shear deformation correspondseto t

Timoshenko beam theory. The beam’s configuration variable or

q(st) =[r(st),di(st),da(st),ds(st)]" € R¥?is subject to six ds = — (6)
orthonormality constraints for the director triad. 0s
is the unit tangent to the centerline. Together with Eqgn.

contraint Eqn. (6) accounts for no shear and no elongation.

Therefore, their velocity reads
3 INVISCID AND INCOMPRESSIBLE FLUID
di = wxdi, The fluid regionF around the beam is connected. Assume
the flow due to deformations of the beam to be irrotational and
whereby the angular velocity vectarcan be represented as to have zero circulation. The fluid velocity fieldcan then be
written as the gradient of a potential functign

1 .
w=wd, W= zaijkdj -di. 3) u = Oe (7)
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Incompressibility implies that the Laplacian @fs zero,
Ap = 0O-(Og) = 0. (8)

The impermeability boundary condition on the beam’s bouyda
03 and the condition of zero velocity at infinity can be written a

(O9)-N|y, = (F+4di)-n|,,. 0¢,=0, (9

wheren is the unit normal into the fluid. Figure 2. ELEMENT-BASED KIRCHHOFF BEAM.
The kinetic energy of the fluid; is given in spatial repre-
sentation by
wherew is given by Eqn. (3) an@, X are both vector-valued
functions of arclengteand timet. It is worth noting that the vir-
T, = }/ Py U-udy, (10) tual linear and angular momenta of the body due to the presenc
2/ of the surrounding fluid can be defined as follows (see, d.4]) [

where dv the standard volume element®h The Kinetic en- l !
ergy of the fluid Eqgn. (10) can be expressed as a boundary inte-  Pfiuid = /5;0 PrONds,  Thud = /ﬁo Pr@(rxn)ds, (13)
gral. First substitute Eqn. (7) into Egn. (10) and use thatitie

where the angular momenturg,q is taken about the origin of

div(ede) = O¢- Do+ @A @ the inertial frame. One could substitute Eqn. (12) into Ea3)
to get
together with Egn. (8). Then, invoke Green'’s theorem, tgkin | |
i;:; consideration that the fluid is at rest at infinity Eqr8)2o Priuid — /0 oy (). 'rds+/0 0y (X@N)-wds,
[ |
| - ¥ .
Tgr — %/a% pff (P(D(P n) da ~ %/kopf (P(D(P n) dS, (11) nﬂwd —/0 p‘f (¢® (r X n)) rd5—|—/0 p‘f (X® (r X n)) O)dS,

(14)

wherep is the mass density of the fluid and dn infinitesimal h d

area element ad3. Note that the integral over the fluid domain wherep; (¢ @;n), gf (x ®drc:l)’dpf (@@ (rx n)_) Ian %& ().( ©

in Eqn. (10) reduces to an integral over the boundary of thiy bo '(Ir x n) are re erfre t:]O agt el lmass per umi engt S”E'
03 as shown in the first equality. Given that the cross-sectiona :car %xpreLsstc])rrl]_Hg)r | e(;nr lé)admehar momentuMyig (1:an \Me
dimensions of the submerged body is assumed to be small rela- oundn LIg thill's slen 1er bo y_t eory (sge, €g. [ ])'0.

tive to its length, one could think of the velocity potentiahs ever, Lighthill only con5|de_r the first term n Eqn. (14_Wh|ch
primarily dependent on the arclengtfand timet such that the means that he c_ompletely 'ghares the r_otatlonal motion bed t
boundary integral can be approximated as an integral oeer th way it couples with the iranslational motion.

centerline of the body as proposed by the last term of Eqr). (11
This approximation is consistent with the Cosserat bearmryhe
employed in Section 2. It is convenient for rewriting thed<in : i
energyT, of the fluid in Section 4 as a function of the configu- As a first step towards modeling a submerged deformable

ration and velocity of the deformable beam to introdcandy body undergqing finite dgformations, we use the Kirchhoff
such that model of elastic beams which support only bending and toedio

deformations. In this case, the condition of constant valum
of the beam is fulfilled automatically. The discrete beam for
=0 -F+X W, (12) mulation described in the sequel is adapted from [12] andl [13

4 DISCRETE BEAM, EXACT FLUID
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where one-dimensional finite elements are used to disertte spatially-continuous fluid domain so that the gradient amal t
beam. Due to the midpoint evaluation of the discrete strimins  Laplacian of the fluid potential are meanningful operatdtsis

Eqn. (16), our formulation corresponds to linear finite edais modeling approach is similar in spirit to that in [3] wheresth
and converges quadratically. immersed body is discretized into three sections from treebn
The centerline of the beam is discretized udihg 1 points The fluid kinetic energy Eqn. (11) can be written as

that divide it intoN elements or edges of equal length see
Fig. 2. Letq(t) € R denote the corresponding spatially dis- KAl
crete configuration variable / psr @H-n / pﬂr o(Oo-n¥)ds

(19)
qt) = [ql(t), N (t)}T Our goal is to find an expression for the kinetic eneTgythat is

1 1 N N N N N NoaT only function of the configuration and velocity of the didized
{f (t),dz(t),d3(t),d3(t),...,r (t),dy (),d3 (t).d3 (t)} ) deformable body. By virtue of the linearity of Laplace’s equ
tion, one could apply the principle of superposition to wiihe
potentialg as a sum of potential functions

whererk denotes the placement of theth element center and
the director triad{d¥} represents its orientation in spagt) is N
subject to the orthonormality constraints Eqn. (2) for etictd. o -

= I . ) T =59 (20)
Additionally, unshearability and inextensibilty give gigo the
constraints

Al whered is the potential function due to a motion of the el-
=kl = (d§*1+ d§) (15) ement. That is¢ is a solution of Laplace’s equation subject to
2 the following boundary conditions (no sum 9n

fork=2,...,N. The bending and torsion strains caused by rela- . r i o
tive rotation of adjacent elements read og | (F'+¢d)-n 55 fori= | in| -
- o’ oy 0 fori # N
- -1
etk _ Lo df+d " dj-di KLk (16) (21)
! 2 2 Al o )

The potentialgg can be written as done in Eqgn. (12)

Assuming that the beam deformations are governed by hyper- _ S
elastic material behaviour, the stored-energy functitkesahe ¢=¢" i'+x o (no sum ori). (22)
form

. Here,$* andxX are potential functions (of bothandt) subject
Al k—1k [ k—1k ke1k [y k—1k)2 to proper boundary conditions. These conditions are obtblry
W(K) T2 kZZ (Ell (Kl ) +EL (K2 ) substituting Eqn. (22) into Egn. (21) and using the fact that

, a7
+GI L (KA ) : . 1 . .
(<6) @=Djd,  Dj=—3(Emdyody)  (nosumor),
with the bending and torsional stn‘fneﬁlk Lk EI‘; Lk and i 1 i i\ o )
GJ1k respectively. The kinetic enerdy of Eqgn. (5) can be andD; = — = (emnd;,, ® d},) is orthogonal (hence its inverse is
discretized in a straightforward way equal to its transpose). To this end, one gets
Al N O K B s X| _pisin -
Ty = > Z ( +d1 (pgll)d1+d2'(p@|2)d2)' ani |y, =o'n’, o (D (d"n )\ag (no sum on).
. (18) (23)

We assume that the spatial discretization of the beam does
not correspond to a spatial discretization of the fluid damai  Now, substitute Egn. (22) into Eqn. (20) and use the regu#ia
In other words, we consider a discretized beam moving in a pression forpin Egn. (19) to get, upon employing the boundary

4 Copyright © 2009 by ASME



conditions Egn. (23) and simplifying, that

[ o 2t o+ ol el of |, (24)

where

. kAl ) . kal .
e'r":/ ps ¢'@nfds 9'(,'32/ pr X @iDf -nds
(k-1)l (k1)

6%_2/

W®0Dkn-+x®n)d
(25)

The kinetic energy Eqn. (24) can be rewritten in termg' ¢f) =
'r'(t),d'l(t),d'z(t),d'?,(t)} in the compact form

1NN

Ty = Zleq - MIf

(26)

whereMK is theadded mass matrix

ok okDf oDk
(Dy)Ter;, (Dy)TeEDS (Dy)TeDs (D)TelDs
(D,)Tek, (D,)TekDk (D,)TekDs (D))TekD|
D})

(Dy)" e, (Dy)TOED] (D5)TODs (Dj)T oDy

Of,D5

Mk =

5 TWO-DIMENSIONAL MOTION

Consider a two-dimensional beam in pure bending and write
the velocity potential§* andy* with respect to the triad attached

to elemenk

0 = ofdf + 955, x*=x5d5.

Also write the velocity of elemerit asi* = (i*- dk)d + (FK.
df)d¥ ande = il wherewk — leo; - df = 3(ds- df — df -
dk) The unit vector normal to elemefis simplyni = dJ The
velocity potenualsbl are thus given by the Neumann problem

A¥ =0 such that

- ik 1lfori=]j
Dq)'fdjlag_&kdjl-d‘{_{ 1=

kK| _
Ofori#j’ Uos|, =0

(27)

Similarly, the velocity potential$§ are given by

AP§ =0 such that

0o - d) = skdl.d§=0, Do _=o.

That is,¢§ are identically zero for all time and &l The velocity
potentialsx‘g are also solutions to Laplace’s equations subject to
zero decay at infinity and

Oxs-df| = @bt-sd))-df|
_ %swherese ((k=1)Al, kal)  fork= ]
fork # j
(28)

Substitute the above expressions for the potenpi&ndx* and
the corresponding boundary conditions into Eqn. (25) to get

@ik ikdi ®dk @Ik
o, = v¥(d}

Blkd ®d5,

df +d, ®dk), (29)

where

alk = /kAI Py ¢i1dS
(k=1)Al

1kAI
2 J(k-1)

ik kA1 i
B :/(kilw Epf X2sds

. Kal
Y = A pr ¢isds= 2/ pf Xods
By virtue of Eqn. (29) and using Eq) = wkd} wherecd =

Leodt-df = 1(ds-df — df - df), the kinetic energy of the fluid
Eqn. (24) and Eqgn. (26) can be rewritten in the conveniemtfor

fk
1 N N L ) .
T=33 > |idydy) k- | (30)
i=1k=1 _
d;
with
. - - )
w%ﬂ®d§-—%-5®d§ %—5®d§

. ik ik ik
ni = Y Y dhodf B Frdb o —B d o d

ylkl k BI
| ped —

o %cﬂ@di_
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The total energy of the body-fluid system is obtained by the holonomic constraints Eqn. (2) and Eqgn. (15) combined in
adding the two-dimensional version of Eqn. (18) and Eqn),(30  g(q) =0, the constrained discrete Euler-Lagrange equations take
the form

z
z

T=T+T, = q-@*ME+MF) g (31) D1Lg(6h,Qny1) + D2La(Gy 1,Gy) —AGT(q,) - An =0

9(Qn:1) =0

NI =

(34)

Il
=
Il
.

The constant mass tensav are given by Here,At denotes the time-step ahg is the discrete Lagrangian

which approximates the action integral of the continuous La

(PsAl 0 0 grangianL over one time interval. Specifically, we use=
MK = Al 0 (psll O], (32) T —W, whereT is given in (31) andV is given in (33) and
0 0O 0 discretize in time using the approximation
wherel and®@denote the X 2 identity and zero matrix, respec- La (G, Onse) :it (Qn1—On) - (Mp+M¢(dy)) - (Qny1 — )
tively. Furthermore, in the two-dimensional case only bhegd
with respect to the out of plane axis occurs and the storedygne - AtW(K(anr% )

function given in Eqn. (17) reduces to
Whereqn+% denotes the midpoint &, andq,_ ;. In the regime

AN k)2 of finite (geometrically nonlinear) elastic deformatiohstt we
W(K) == ZZEI ’ (Kz ’ ) : (33) consider here, the midpoint evaluation of the stored enfengyy-
k= tion enhances the robustness of the simulation, compared to
the evaluationW(K(q,)) at the last time-node, and substan-
tially larger time-steps can be used. The resulting impflioie-
stepping scheme Eqn. (34) is solved using Newton-iteration
This discrete Lagrangian is invariant with respect to rigid
body motion superposed on the beam configuration. Due to the
variational nature of the time-stepping scheme, the cpoed-
ing discrete momentum maps, namely the total linear and an-
gular momentum of the fluid-solid-system are exactly coresr
(up to the numerical tolerance of 1®employed in the Newton-
iteration). Furthermore, solution shows the typical goodrgy
behaviour of variational integrators in the sense thatttitat en-
ergy of the fluid-solid-system is oscillating with small alityrde,
in particular, energy is not gained or dissipated numdsical

6 LOCOMOTION OF THE SUBMERGED BEAM
Numerical method

The problem of solving Laplace’s equation for the veloc-
ity potentials over the fluid domaim subject to zero velocity
at infinity and impermeable boundary conditions can be done
numerically using @oundary element methpdlso referred to
as a panel method. We use the panel method devised by [14]
(see also [15]) which utilizes a piecewise-constant diation
of source singularitiesver the boundary of the submerged body
and computes the strength of this distribution by impospye-
priate boundary conditions. The use of source/sink distions
cannot contribute any net circulation around the body alwslval
one to ensure a priori that the circulation in the fluid rersain
zero at all time. Physically speaking, tHiistitious source distri- Numerical examples and discussion
butioninduces a velocity field in the fluid that is equivalent to the In the sequel, different types of ‘swimming’ resulting from
velocity field resulting from the motion of the submergedyod  different loading, stiffness, geometry, discretizatiordanitial
The theoretical foundation of such panel methods is based-on  condition are discussed. The focus is on the locomotion of

formulating Laplace’s equations as a boundary integrahequ, the ‘fish’ rather than on the beam deformation. Table 1 sum-
using the divergence theorem, see, e.g., [16](Chapter 6). marises the parameter values in the different simulatiohis.

For the submerged planar Cosserat beam, we solveNor 2 dynamic simulations are based on the constant time/4tep
distinct source distributions corresponding to tiev2locity po- 1072, the fluid densityp, = 10 and the inertia parameters of
tentialsd¥, x& (k=1,...,N) subject to the two sets of boundary  the beam(p,A) = 3.1- 10! and (p411) = 7.8-10~° appear-
conditions in Eqn. (27) and Eqn. (28). ing in the constant mass matrix of the beam Eqn. (32). In gen-

Time-integration of the equations of motion is performed eral, the number of fluid panels per element is 4, except when
with a variational integrator see, e.g., [17], yielding a  very coarse discretizations are used, &lg= 3, then it is in-
symplectic-momentum conserving discrete trajectory. ailet creased to 12. Furthermore, the loading torques vary aicgprd
on variational integrators for constrained systems carobed to t(t,s) = Acoq ft —ks/l) with f = K = 2mtin time and space,
in [18]. Accordingly, usingLagrange multipliersk to enforce see Fig. 3.

6 Copyright © 2009 by ASME



Table 1. PARAMETER VALUES IN THE DIFFERENT SIMULATIONS. Active swimming refers to the case where the beam

undergoes a net locomotion due to prescribed loading on its

i) At=102s p, =10kg/n? centerline. We think of the prescribed loading as the atitivia
’ mechanism which is responsible for locomotion similar te th
: (psA) =3.1-10 %kg/m (pgl1) =7.8-10 %kg/m muscle activation in real fish. During active swimming, nerw

.. torques are applied at the ‘joints’ between the elements.
xii) f=k=2mn d PP ]

A EINm? I[m] N Vo[m/s] Fig. 4 shows the trajectories of three different simuladion
. In each element’s center, the two directors are attachdtuso i
) ! 5 L 9 0,0 trate the element’s orientation. While showing the samd-qua
i) 1 10 1 9 [0,0] itative motion, namely swimming to the left and performing a
slight curve to the right, clearly, the trajectories as veslthe
i) 0.5 5 1 9 [0.0] swimming velocity depend in a nontrivial way on the beam pa-
iv) 1 5 1 3 [0,0] rameters as well as the loading. In the top simulatjpthe ratio
between the beam’s stiffness and the amplitude of the Igadin
v) 05 5 2 9 [0.0] leads to faster swimming motion in comparisoriioandiii ). In
vi) 1 [5,50] 1 9 (0,0 i), the same loading is applied to the twice as stiff beam which
. leads to smaller deformation and results in slower motiorthé
vii) ! 3,19 1 9 [0,0] bottom simulatioriii ), the stiffness is equal to thatin however
viii)  [0,1] 5 1 9 [0,0] the amplitude of the loading is only half as big leading toreve
. slower motion.
) [0.1 5 1 9 [0.0] Using a coarse spatial discretization yields a less stable
X) 5 1 3 [1071,1079 motion (see also below for a discussion of the relation betwe
. 1 ana the discretization and stability). Trajectom) in Fig. 5 passes
Xi) 5 1 9 107,107 trough a semicircle during the simulation tirne- 100, while in
xi) 0 5 1 27 [10-1,104] the same simulation with a finer discretizatignthe trajectory

shows only a slight curve. Remarkably, in simulation the
beam turns to the right trough a quadrant. The beam is twice as
long as that iniii ) and shows a qualitatively different (turning
instead of forward motion) and much faster motion.

Two simulations with different bending stiffness varying
along the centerline of the beam are shown in Fig. 6. Both
beams move to the left and perform slight left curves in asitr
to the right curved trajectories of the equally loaded beams
i) andii). In the top simulatiorvi), the first half of the beam
(the ‘*head’) is ten times stiffer than the second half (tlad")t
One can observe that bending occurs in the second half of the
beam only. The very slow velocity of the motion indicates
that being able to bend the head may be important for fast
swimming. In comparison twi), the beam invii) moves faster
and shows also deformation of the head. Its bending stéfnes
varies linearly fronE %2 = 10 at the head t&1%° = 3 at the tail.

Next, we investigate two kinds of swimming behavior as
shown in Fig. 7. First inviii), torques are applied between all
the elements for a period of= 50, such that until this time, it
moves as simulation). After that, the beam undergoes passive
swimming and is rapidly slowing down and moves into a tighter
curve. Secondly, inx), only the head (the first four elements
from the left) is loaded by nonzero torques. This beam moves
slowly to the left on an almost straight trajectory.

Figure 3. APPLIED TORQUES BETWEEN THE ELEMENTS 1(t,S) =
Acog ft —ks/l)wWITH f =K = 21T
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t =120

ok
15 tk m tsiosisstoatoaiostonionia Z)

t=0
Y
. t=210 [T
\ t=0
t =400
051 ‘.—-\———_- ZZZ)
t =206 =0
0 | | | | | | | )
-3 -25 -2 -15 -1 -0.5 0 0.5 1

Figure 4. BEAM CONFIGURATIONS WITH DIFFERENT APPLIED
TORQUES AND STIFFNESS PARAMETERS, i) A= 1 El =5,ii) A=
1,El =10ANDIiii) A=0.5El =5.

t =100
2r /
1Rt_44
[ ZU)
t=0 )
R v
L \
Y
((
- t=50
((
-2t /
&l t=100f
-4 L
0 1 2 3 4

Figure 5. BEAM CONFIGURATIONS WITH DIFFERENT APPLIED
TORQUES, LENGTHS AND NUMBER OF ELEMENTS, iv) A= 1,1 =
1,N=3ANDV)A=051=2N=09,

Finally, we examine the behavior of the beam when it is
moving passively with no applied torques. We focus on the cas
when the beam is given an initial translational velocityngdts
undeformed length. This motion is a relative equilibriuhattis,

0.5

15 I I I I I I I ]
3

Figure 6. BEAM CONFIGURATIONS WITH DIFFERENT STIFFNESS
VARYING ALONG THE BEAM, Xi) EI =50,5< 5,El =5,5> & AND
xii) El = 11— .

but only a given initial velocity. In a first numerical expment,

only a translational initial velocity ofp = [0.1,0] in x-direction

was imposed on every element and beams consistir -6f3
andN = 9 elements have been tested. Both the coarsely and the
finely discretized beams were swimming perfectly stablehto t
right fort = 100. In a second experiment, a small perturbation
in the initial y-velocity is given and we look for the first occur-
rence of unstable behavior in the sense that the beam legaves i
horizontal configuration (with an end nodg’scoordinate devi-

in the absence of any loading and disturbances, the beam coi-

tinues to move with the same translational velocity. We nume
ically examine the behavior of the beam with no torque logdin

8

' t =100
1
Y 0.5 N_-\“—— ’U’L’LZ)
t =50 t=0
of _‘LLL“ S E— zz)
t =399 =197 t=0
_05 . . . . . . . . )
-3 -25 -2 -1.5 -1 -0.5 0 0.5 1 1.5
T
Figure 7. BEAM CONFIGURATIONS WITH DIFFERENT APPLIED

TORQUES, Viii) T(t,s) = 0,t > 50AND ix) T(t,s) = 0,5 > 1.
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Figure 8. BEAM CONFIGURATIONS WITH DIFFERENT NUMBER OF
ELEMENTS, X) N = 3, xi) N = 9 AND Xii) N = 27. NO TORQUES
ARE APPLIED (A = 0) AND THE BEAM IS GIVEN AN INITIAL VELOC-
ITY Vo = [107%,1074] IN EVERY ELEMENT.

ating more than one percent of the beam’s length from its ini-
tial value). Usingvp = [0.1,€] with € = 2.2- 10716 being the
floating-point relative accuracy in Matlab, ahd= 3 (with 12
fluid panels per element), first unstable behavior was dedest

t = 35.13. A slightly larger perturbation of the initigtvelocity

Vo = [0.1,107%] lead to unstable motion at= 2.13. The third
considered initial velocity varies over the length of thaeac-
cording tovg = [0.1,(3.5— &) - 10~ and first deviations from
the horizontal configuration occurredtat 3.8.

Using N = 9 (with 4 panels per element) resulted in insta-
bility att =781, t = 4.4 andt = 9.91, for the different initial
velocities, respectively. Simulations with 12 panels dement
predicted unstable behavior at slightly earlier times, elgnat
t = 7803,t = 4.37 andt = 9.86. Increasing the number of
elements to\N = 27, the influence of the number of fluid pan-
els per element becomes negligible. First unstable behhai®
been detected dt= 82.04,t = 5.26 andt = 4.59 for the dif-
ferent initial velocities. For all three discretizatiorthe be-
havior did not change when the bending stiffness varied with
El € {5,10,10%,10°%, 10%}.

Using the initial velocityo = [0.1,107%], Fig. 8 shows the
motion of the coarsely discretized beajrand the two finer dis-
cretizations inxi) andxii), respectively. On the one hand, it
is visible that the coarse beam’s behavior is very unstatde —

t = 10, the beam has already rotated by almost°180n the
other hand one can observe that the behavior of the two finer
beams does not differ significantly. These numerical expenis
show that the onset of instability may be delayed by proper di
cretization of the beam. A rigorous analysis of the beanabibt

ity, including its behavior in the continuous limit, remaito be
undertaken in a future work.

7 CONCLUSIONS

The motion of a Cosserat beam submerged in an infinite vol-
ume of inviscid, incompressible fluid is proposed as a model
for fish swimming. Due to the nonlinear coupling between the
beam and the surrounding fluid (accounted for using the added
mass effect), the submerged beam could undergo a net locomo-
tion (swimming) subject to prescribed torsional loadingitsn
centerline. Such loading can at most result in a net rotation
motion in the absence of the fluid. In addition to the abilify o
the model to detect net displacements and rotations, itadso
counts for the body’s elastic effects, that is, deformagidue to
the prescribed loading. This is in contrast to the fish mode! p
sented in [3] which considers prescribed deformations ares d
not account for possible mechanical reflexes of the fish gkih a
muscles. The submerged beam model presented here provides a
suitable framework for modeling fish swimming in a way that en
codes the material properties of the fish and the shape axtuat
along its centerline. Indeed, properly modeling the etaffiects
is indispensable for addressing issues related to thebitgsof
a prescribed deformation in terms of the stresses and stitain
causes in the fish body. Future extensions of this work will in
clude more accurate models of the material behavior of the fis
(better constitutive models) which will allow us to analythe
stresses and strains as well as the energy needed for laoomot
in more detail.
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