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Abstract In the present work, the unified framework for the computational treatment of
rigid bodies and nonlinear beams developed by Betsch and Steinmann (Multibody Syst.
Dyn. 8, 367–391, 2002) is extended to the realm of nonlinear shells. In particular, a specific
constrained formulation of shells is proposed which leads to the semi-discrete equations of
motion characterized by a set of differential-algebraic equations (DAEs). The DAEs provide
a uniform description for rigid bodies, semi-discrete beams and shells and, consequently,
flexible multibody systems. The constraints may be divided into two classes: (i) internal
constraints which are intimately connected with the assumption of rigidity of the bodies,
and (ii) external constraints related to the presence of joints in a multibody framework. The
present approach thus circumvents the use of rotational variables throughout the whole time
discretization, facilitating the design of energy–momentum methods for flexible multibody
dynamics. After the discretization has been completed a size-reduction of the discrete sys-
tem is performed by eliminating the constraint forces. Numerical examples dealing with
a spatial slider-crank mechanism and with intersecting shells illustrate the performance of
the proposed method.

Keywords Conserving time integration · Constrained mechanical systems · Flexible
multibody dynamics · Nonlinear structural dynamics · Differential-algebraic equations

1 Introduction

In Ref. [7] the discrete null space method developed by Betsch [6] has been applied to multi-
body systems comprising rigid bodies. In the present work, the procedure is extended for
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nonlinear structural mechanics, in particular for geometrically exact beams and shells form-
ing flexible multibody systems. The precursor works [6, 7] will be subsequently referred to
as Part I and Part II, respectively.

In recent years the extension of finite element methods for nonlinear structural dynamics
to the realm of flexible multibody dynamics has attracted a lot of research. This has been
facilitated by previous developments of computational methods for nonlinear structural me-
chanics which have reached a certain state of maturity. In this connection, main ingredients
of contemporary methods for structural dynamics are (i) the use of nonlinear strain mea-
sures which may account for both finite strains and arbitrarily large rigid body motions, and
(ii) so-called mechanical integrators (e.g., energy–momentum or energy-decaying schemes)
which make possible the stable time integration of the ‘stiff’ nonlinear ODEs resulting from
the space discretization.

In a flexible multibody framework the components may consist of flexible bodies (e.g.,
beams, shells or continua) and rigid bodies. These components are typically interconnected
by various types of joints (e.g., spherical, revolute, prismatic, . . .). The joints impose con-
straints on the multibody system, thus restricting the relative motion of the components. The
presence of the constraints constitutes the major challenge for the development of finite-
element-based computational methods.

In essence, three alternative methods have been applied previously to deal with the con-
straints within a nonlinear finite element framework: (i) The constraints may be enforced
by means of Lagrange multipliers. This approach has been used, for example, by Géradin
and Cardona [17], Ibrahimbegović et al. [25], Puso [33], Taylor [40], Bottasso et al. [12] and
Bauchau et al. [3]. (ii) Alternatively, the constraints may be accounted for by kinematic rela-
tionships within the master-slave approach developed by Jelenić and Crisfield [27], see also
Ibrahimbegović et al. [25], Göttlicher [21] and Muñoz et al. [32]. (iii) The constraints may
be imposed by means of the penalty method. This approach has been applied, for example,
by Goicolea and Orden [18].

In all of the above cited works rotational parameters are used as an integral part of the
description of both structural components and rigid bodies. Similarly, previous works on the
dynamics of nonlinear shells make use of rotational parameters, at least within the time dis-
cretization. See, for example, Simo et al. [38], Simo and Tarnow [39], Kuhl and Ramm [28],
Sansour et al. [36], Romero and Armero [34] and Brank et al. [13].

In the present work we present a specific discretization (in space and time) of geomet-
rically nonlinear beams and shells that does not rely on the use of rotational parameters.
Instead of using rotations for the parametrization of the underlying nonlinear configuration
manifold we use redundant coordinates and directly impose algebraic constraints associated
with the configuration manifold at hand using the Lagrange multiplier method. These con-
straints are termed internal constraints. Further constraints due to Dirichlet-type boundary
conditions and due to joints in a multibody framework are termed external constraints. This
approach has already been successfully applied to nonlinear beams and rigid bodies, see
Betsch and Steinmann [8, 10]. It leads to differential-algebraic equations (DAEs) of motion
with constant mass matrix. In [29, 30] Leyendecker et al. compared different approaches
concerning the constraint enforcement (in particular the Lagrange multiplier method, the
penalty method and the augmented Lagrange method) theoretically and with the help of
examples of mass point system, rigid body and nonlinear beam dynamics. It turned out
that only the Lagrange multiplier method yields an acceptable combination of accuracy
in the constraint fulfillment and computational costs. As a consequence of the advocated
DAE-formulation of rigid bodies, beams and shells, the appearing constraints are at most
quadratic, which facilitates the energy–momentum conserving time-integration. However,
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the resulting time-stepping scheme has a relatively large dimension (it has to be solved for
redundant coordinates plus Lagrange multipliers) and it may suffer from conditioning prob-
lems (cf. Part I). Both drawbacks are eliminated by the application of the discrete null space
method. Its main ingredients are a discrete null space matrix and a reparametrization of the
discrete configuration variable in independent incremental unknowns with which a size re-
duction of the time-stepping scheme can be achieved and potential conditioning problems
can be removed. Accordingly, the main goal of this work is the design of viable null space
matrices with their discrete counterparts for the internal constraints in geometrically exact
beams and shells. Together with the null space matrices developed for the external con-
straints due to joint connections in Part II, the total null space matrix for a flexible multibody
system can be composed multiplicatively.

The energy-consistent temporal discretization of the DAEs governing the dynamics of
constrained finite-dimensional mechanical systems is sketched in Sect. 2. Furthermore, the
reduction of the resulting time-stepping scheme by the discrete null space method is out-
lined. Section 3 deals with the dynamics of geometrically exact beams which can be viewed
as a generalization of rigid bodies to the spatially distributed case. In this connection, the
rigid body formulation explained in Part II is recalled in brief. Section 4 is devoted to the
formulation of geometrically exact shells as constrained mechanical systems. In particular,
the discrete null space matrices pertaining to the internal constraints in beam and shell dy-
namics are deduced in these sections. A general procedure for the treatment of multibody
systems consisting of rigid and flexible components by the discrete null space method is
described in detail in Sect. 5. The following numerical examples deal with the dynamics of
a spatial slider-crank mechanism consisting of beams and rigid bodies and with a multibody
system comprised by intersecting shells and rigid bodies respectively.

2 Outline of the discrete null space method

An outline of the treatment of constrained dynamical systems by null space methods is given
in this section. First the d’Alembert-type formulation of a finite dimensional constrained
mechanical system is deduced in the temporal continuous setting. Then, according to the
discrete null space method, similar steps are performed in the temporal discrete setting to
deduce a reduced energy-consistent time-stepping scheme.

2.1 Constrained dynamical systems

Consider an n-dimensional mechanical system with the time-dependent configuration vector
q(t) ∈ Rn and velocity vector q̇(t) ∈ Rn, where t ∈ [t0, t1] ⊂ R denotes the time. Let the
system be constrained by the function Φ(q) = 0 ∈ Rm. The constrained formulation of the
equations of motion is based on the Lagrangian L : Rn × Rn × Rm → R

L(q, q̇,λ) = 1
2

q̇ · M · q̇ − V (q) −ΦT (q) · λ (1)

which comprises the kinetic energy including the consistent mass matrix M ∈ Rn×n, a poten-
tial function V : Rn → R and the scalar product of the constraint function with a Lagrange
multiplier λ ∈ Rm. For simplicity, a conservative system is assumed with a potential energy
function, from which a nodal force vector can be computed. For deformable mechanical
systems, the potential energy function may be split into an internal part Vint corresponding
to hyperelastic material behavior and an external part Vext accounting for external loading
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such that V = Vint + Vext. Note that a characteristic feature of the constrained formulation
of rigid body, beam and shell dynamics advocated in Sects. 3 and 4 is that M is constant.
Hamilton’s principle of least action leads to the Lagrange equations of motion of the first
kind:

M · q̈ + ∇V (q) + GT (q) · λ = 0,

Φ(q) = 0
(2)

where G(q) = DΦ(q) is the Jacobian of the constraints. The vector GT (q) · λ represents
the constraint forces that prevent the system from deviations of the constraint manifold:

Q =
{
q(t) ∈ Rn | Φ(q) = 0

}
. (3)

It is assumed that the m constraints are independent, i.e., rank(G(q)) = m for all q ∈ Q and
Q is an (n−m)-dimensional submanifold of the configuration space. Due to the consistency
condition, which requires that the constraints are fulfilled for all times, admissible velocities
are restricted to the null space of the constraint Jacobian. Together with the configuration
constraints the consistency condition defines the 2(n − m)-dimensional submanifold

T Q =
{
(q, q̇) ∈ Rn × Rn | Φ(q) = 0,G(q) · q̇ = 0

}
(4)

of the state space.

Continuous null space matrix For every q ∈ Q, the basis vectors of TqQ form an
n × (n − m) matrix P (q) with corresponding linear map P (q) : Rn−m → TqQ. This ma-
trix is called null space matrix, since

range
(
P (q)

)
= null

(
G(q)

)
= TqQ. (5)

Hence admissible velocities can be expressed as

q̇(t) = P (q) · ν(t) (6)

with the independent generalized (quasi-) velocities ν ∈ Rn−m. Thus a premultiplication
of the differential equation (2)1 by P T (q) eliminates the constraint forces including the
Lagrange multipliers from the system. The resulting d’Alembert-type equations of motion
read

P T (q) · [M · q̈ + ∇V (q)] = 0,

Φ(q) = 0.
(7)

Remark 2.1 (Continuous null space matrix) Note that the null space matrix is not unique,
a necessary and sufficient condition on P (q) is (5). The null space matrix can be found
in different ways, either by velocity analysis (i.e., corresponding to (6), the map mapping
the independent generalized velocities to the redundant velocities represents a viable null
space matrix) or by performing an explicit QR-decomposition of the transposed continuous
constraint Jacobian in terms of the configuration variable

GT = Q · R = [Q1,Q2] ·
[

R1

0(n−m)×m

]
(8)
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with the nonsingular upper triangular matrix R1 ∈ Rm×m and the orthogonal matrix Q ∈
O(n), which can be partitioned into the orthogonal matrices Q1 ∈ Rn×m and Q2 ∈ Rn×(n−m).
Then P (q) = Q2(q) serves as null space matrix, which is sometimes called ‘natural orthog-
onal complement’ (see [1]). The third way to obtain a continuous null space matrix as the
Jacobian of the reparametrization of the constraint manifold is often possible, but the result-
ing continuous null space matrix can in general not be used to infer a discrete null space
matrix. This is due to the fact that the respective discrete values of the generalized coordi-
nates are not available in the present approach.

Reparametrization of unknowns For many applications it is possible to find a reparame-
trization of the constraint manifold F : U ⊆ Rn−m → Q in terms of independent generalized
coordinates u ∈ U . Then the Jacobian DF (u) of the coordinate transformation plays the role
of a null space matrix. Since the constraints are fulfilled automatically by the reparametrized
configuration variable q = F (u), the system is reduced to n − m second order differential
equations. This is the minimal possible dimension for the present mechanical system which
consists of precisely n − m degrees of freedom.

2.2 Discrete null space method

A drawback for the time-discretization of the d’Alembert-type equations of motion (7) is
that the null space matrix is configuration-dependent. The discrete null space method cir-
cumvents this shortcoming. It relies on the temporal discretization of the comparatively
simple structured constrained formulation (2) and the size reduction is performed in the dis-
crete setting by the introduction of a discrete null space matrix in analogy to the procedure
in the continuous case.

The DAEs (2) are discretized in time using the concept of discrete derivatives by Gon-
zalez [20]. Alternatively, the constrained scheme applied herein can be derived from the
Galerkin-based mG(1) method as proposed by Betsch and Steinmann [9]. Using the given
quantities (qn,vn) ∈ Q×Rn which approximate q(tn), q̇(tn) respectively, the following con-
strained scheme determines qn+1,vn+1,λ

qn+1 − qn −!tvn+ 1
2

= 0,

M · (vn+1 − vn) +!tDV (qn,qn+1) +!tGT (qn,qn+1) · λ = 0,

Φ(qn+1) = 0.

(9)

Here (•)n+ 1
2

= ((•)n + (•)n+1)/2 denotes the midpoint value of the approximations to a time
dependent function at the time nodes and !t denoted the time-step. The operator D denotes
the discrete derivative and G(qn,qn+1) = DΦ(qn,qn+1). The above scheme enjoys a number
of desirable properties such as second-order accuracy in the coordinates and velocities and
satisfaction of the configuration constraints at the time nodes. Furthermore, by definition of
the discrete derivative (see [19]), the resulting scheme (9) conserves the total energy and
(at most quadratic) momentum maps, related to symmetries of the underlying continuous
system, along its solution. Further details of the constrained scheme can be found in Part I
of this work. It is worth mentioning, that the constraints on velocity level emanating from
the temporal differentiation of (2)2 can easily be incorporated into the present time-stepping
scheme, see [9]. However, according to experience, their incorporation does not alter the
numerical results significantly enough to warrant the corresponding increase in numerical
costs.
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Discrete null space matrix The transition to the discrete d’Alembert-type scheme impli-
cating a size reduction of the constrained scheme (9) can be accomplished in complete anal-
ogy to the continuous case. A discrete null space matrix P(qn,qn+1) : Rn−m → Rn whose
columns form a basis for the null space of the discrete derivative of the constraints, i.e.

range
(
P(qn,qn+1)

)
= null

(
G(qn,qn+1)

)
(10)

must be found. Premultiplying (9)2 by the transposed of this matrix cancels the con-
straint forces and thus eliminates the Lagrange multipliers from the scheme. The resulting
d’Alembert-type time-stepping scheme

qn+1 − qn −!tvn+ 1
2

= 0,

PT (qn,qn+1) ·
[
M(vn+1 − vn) +!tDV (qn,qn+1)

]
= 0,

Φ(qn+1) = 0

(11)

is equivalent to the constrained scheme and can be used to determine qn+1 ∈ Rn (see
Sect. 3.2. in Part I).

One major goal of this work is to find appropriate explicit representations of the discrete
null space matrix P(qn,qn+1) ∈ Rn×(n−m) for multibody systems comprised of rigid bodies,
geometrically exact beams and shells.

Remark 2.2 (Discrete null space matrix) The fulfillment of condition (10) and the consis-
tency property of the discrete derivative imply that a viable discrete null space matrix co-
incides with its continuous counterpart for decreasing time-steps, i.e. P(qn,qn+1) → P (qn)

as qn+1 → qn. In general, an explicit representation of the discrete null space matrix is de-
sirable for practical applications since it minimizes the computational costs. Indeed, such
an explicit representation is feasible for many application. For example, for rigid bodies,
kinematic pairs and open kinematic chains, the discrete null space matrices pertaining to the
specific constraints are given in Part II. For these examples, the discrete null space matrices
rely on the midpoint evaluation of the continuous null space matrix or a slight modification
of that. If no explicit discrete null space matrix can be found, nevertheless an implicit rep-
resentation can be used in any case. It is based on the QR-decomposition of the transposed
constraint Jacobian at qn

GT (qn) = Qn · Rn = [W n,Un] ·
[

R̄n

0(n−m)×m

]
(12)

containing the nonsingular upper triangular matrix R̄n ∈ Rm×m and the orthogonal matrix
Qn = [W n,Un] ∈ Rn×n that can be partitioned into the n×m matrix W n and the n×(n−m)

matrix Un. Then an implicit representation of the discrete null space matrix is defined by

P(qn,qn+1) =
[
I n×n − W n ·

(
G(qn,qn+1) · W n

)−1 · G(qn,qn+1)
]
· Un (13)

see Part I for a detailed deduction.

Reparametrization of unknowns Similar to the continuous case, a reduction of the system
to the minimal possible dimension can be accomplished by a local reparametrization of
the constraint manifold in the neighborhood of the discrete configuration variable qn ∈ Q.
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At the time nodes, qn+1 is expressed in terms of the incremental generalized coordinates
u ∈ U ⊆ Rn−m, such that the constraints are fulfilled:

F qn
: U ⊆ Rn−m → Q i.e. Φ(qn+1) = Φ

(
Fqn

(u)
)
= 0. (14)

Insertion of this nodal reparametrization into the d’Alembert-type scheme redundan-
cies (11)3. The resulting d’Alembert-type scheme with nodal reparametrization is equiv-
alent to the constrained scheme (9) (cf. Sect. 3.4. in Part I), thus it also has the key prop-
erties of energy–momentum conservation and exact constraint fulfillment. While the con-
strained scheme becomes increasingly ill-conditioned for decreasing time-steps, the condi-
tion number of the d’Alembert-type schemes is independent of the time-step. Altogether
the d’Alembert-type scheme with nodal reparametrization features a combination of the
required algorithmic conservation properties and the good conditioning quality with a mini-
mal dimension. Inserting vn+1 from (11)1 into (11)2, one has to solve a (n−m)-dimensional
system for u ∈ Rn−m, i.e. the number of equations equals exactly the number of degrees of
freedom of the mechanical system (cf. Sect. 3.3. in Part I).

It is worth mentioning that the update of the unknowns within the iterative solution pro-
cedure of the nonlinear system of equations (11) can be performed twofold, either in an it-
erative or in an incremental way. In any case, qn = F qn

(0) holds. Using iterative unknowns,
the configuration variable is updated in each iteration of the Newton–Raphson iteration (in-
dexed by l) according to q l+1

n+1 = Fq l
n+1

(u) such that the constraints are fulfilled. On the other

hand, a standard additive update of the incremental unknowns u(l) = u(l−1) +!u(l) can be
used and the new configuration is determined by qn+1 = F qn

(ulmax) after the iteration is
complete, i.e. l = lmax.

3 Dynamics of geometrically exact beams

In the context of structural mechanics, rigid bodies can be considered as a special case of
geometrically exact beams, for which the spatial distribution is degenerated to a single point.
In the sequel, the discrete null space matrix for the treatment of geometrically exact beams
will be deduced.

3.1 Constrained formulation of the equations of motion

The treatment of rigid bodies as structural elements relies on the kinematic assumptions
illustrated in Fig. 1 (see [2]) that the placement of a material point relative to an orthonormal

Fig. 1 Configuration of rigid body and a spatially discretized beam
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basis {eI } fixed in space can be described as

x(ζ i, t) = ϕ(t) + ζ id i (t). (15)

Here ζ i represent coordinates in the body-fixed director triad {dI }. Einstein summation con-
vention is used to sum over repeated indices i = 1,2,3. The time-dependent configuration
variable of a rigid body

q(t) =





ϕ(t)

d1(t)

d2(t)

d3(t)



 ∈ R12 (16)

consists of the placement of the center of mass ϕ ∈ R3 and the directors dI ∈ R3, I =
1,2,3 which are assumed to constitute a principal basis for the rigid body. The director triad
indicates the rigid body’s orientation. The representation of the body’s rigidity constrains
the directors to stay orthonormal during the motion. This leads to the so-called internal
constraints.

This description of a ‘one-node structure’ can be extended easily to the modeling of geo-
metrically exact beams as special Cosserat continuum (see [2]). The placement of a material
point of the beam reads

x
(
ζ κ , s, t

)
= ϕ(s, t) + ζ κdκ (s, t). (17)

Here (ζ 1, ζ 2, ζ 3 = s) ∈ R3 is a triple of curvilinear coordinates with s ∈ [0,L] ⊂ R being
the arc-length of the line of centroids ϕ(s,0) ∈ R3 in the reference configuration. {dI } rep-
resent an orthonormal triad. The directors dκ (s, t), κ = 1,2 span a principal basis of the
cross-section at s and time t which is accordingly assumed to stay planar. In the refer-
ence configuration, d3(s,0) is tangent to the central line ϕ(s,0) but this is not necessary
in a deformed configuration. This allowance of transverse shear deformation corresponds
to the Timoshenko beam theory (see [41]). In contrast to the kinematic assumption for the
placement of a material point in a rigid body (15), the sum over the repeated index in (17)
comprises κ = 1,2 and the spatial extension of the beam in the longitudinal direction is
accounted for by the parametrization in s. A spatial discretization of the beams configura-
tion (see Fig. 1) in terms of isoparametric finite elements as proposed by [11, 35], using
one-dimensional Lagrange-type nodal shape functions Nα(s), reads

qh(s, t) =
nnode∑

α=1

Nα(s)q
α(t) ∈ R12 (18)

where nnode denotes the number of nodes on the central line. This leads to the semi-discrete
configuration vector

q(t) =




q1(t)

...

qnnode(t)



 ∈ R12nnode (19)

where the configuration qα , α = 1, . . . , nnode at each node takes the form given in (16).
Apparently, a spatially discretized beam can be interpreted as a chain of rigid bodies for
which the interconnections are prescribed by the connectivity of the spatial finite element
method, see e.g. [22]. In the sequel, a rigid body is considered as a special semi-discrete
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beam, consisting of only one node, i.e. nnode = 1. The internal (orthonormality) constraints
Φ int : R12nnode → Rmint with mint = 6nnode, pertaining to the underlying continuous theory
read for α = 1, . . . , nnode

Φ int(q) =




Φ1

int(q
1)

...

Φ
nnode
int (qnnode)



 , Φα
int

(
qα

)
=





[(dα1 )T · dα1 − 1]/2

[(dα2 )T · dα2 − 1]/2

[(dα3 )T · dα3 − 1]/2

(dα1 )T · dα2
(dα1 )T · dα3
(dα2 )T · dα3





. (20)

An inherent property of the interpolation (18) is that the constraints on the director triads
are relaxed to the nodes of the mesh.

The Jacobian Gint(q) = DΦ int(q) of the scleronomic holonomic constraints in (20) reads

Gint(q) =





G1
int(q

1) 0 · · · 0

0 G2
int(q

2) · · · 0
...

...
. . .

...

0 0 · · · G
nnode
int (qnnode)





(21)

with

Gα
int(q

α) =





0 (dα1 )T 0 0

0 0 (dα2 )T 0

0 0 0 (dα3 )T

0 (dα2 )T (dα1 )T 0

0 (dα3 )T 0 (dα1 )T

0 0 (dα3 )T (dα2 )T





. (22)

Since the internal constraints (20) are quadratic in q , the discrete derivative of the constraints
coincides with the midpoint evaluation of the constraint Jacobian (21), i.e.

Gint(qn,qn+1) = Gint(qn+ 1
2
). (23)

For the implementation of the constrained scheme, (9)1 is solved for vn+1 and inserted
into (9)2. For the semi-discrete beam, this leads to a nonlinear system of algebraic equa-
tions in terms of n + mint = 18nnode unknowns.

Remark 3.1 Many current semi-discrete beam formulations avoid the introduction of inter-
nal constraints by using rotational degrees of freedom, see e.g. [24, 26]. However it has been
shown by Chrisfield and Jelenic [16], that the interpolation of noncommutative finite rota-
tions bears the risk of destroying the objectivity of the strain measures in the semi-discrete
model. This can be circumvented by the spatial interpolation of the director triad in (18) as
proposed independently in [35] and [11].
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Similar to the spatial discretization of the beam’s configuration in (18) and (19), the
velocities are approximated according to

q̇h(s, t) =
nnode∑

α=1

Nα(s)q̇
α(t) ∈ R12 (24)

using the semi-discrete velocity vector

q̇(t) =




q̇1(t)

...

q̇nnode(t)



 ∈ R12nnode . (25)

With regard to (16), the velocity vector q̇α , α = 1, . . . , nnode at each node takes the form

q̇α(t) =





ϕ̇α(t)

ḋ
α

1 (t)

ḋ
α

2 (t)

ḋ
α

3 (t)




∈ R12. (26)

Due to the orthonormality of each director triad during the motion and deformation, the
director velocities at the nodes can be written as

ḋ
α

I = ωα × dαI = −d̂αI ·ωα, I = 1,2,3 (27)

where ωα ∈ R3 denotes the angular velocity of the triad at the α-th node.

3.2 Discrete null space method with nodal reparametrization

The independent generalized velocities of the semi-discrete beam are given by its twist

t =




t1

...

tnnode



 ∈ R6nnode (28)

where the twist of the α-th node tα ∈ R6 reads

tα =
[
ϕ̇α

ωα

]
(29)

comprising the nodal translational velocity ϕ̇α ∈ R3 and the nodal angular velocity ωα ∈ R3.
Now the redundant velocities q̇ ∈ R12nnode of the semi-discrete beam may be expressed as
q̇ = P int(q) · t where the 12nnode × 6nnode internal null space matrix P int(q) is given by

P int(q) =





P 1
int(q

1) 0 · · · 0

0 P 2
int(q

2) · · · 0
...

...
. . .

...

0 0 · · · P
nnode
int (qnnode)




(30)



The discrete null space method for the energy-consistent integration 55

and P α
int(q

α) is the null space matrix associated with the α-th node reading

P α
int

(
qα

)
=





I 0

0 −d̂α1

0 −d̂α2

0 −d̂α3




. (31)

Discrete null space matrix In order to deduce the d’Alembert-type scheme (11), a tem-
poral discrete null space matrix fulfilling (10) must be found. With regard to the midpoint
evaluation of the constraint Jacobian in (23), it is evident that a midpoint evaluation of (30)
suffices the requirements, i.e.

Pint(qn,qn+1) = P int(qn+ 1
2
) (32)

can be inserted into the d’Alembert-type scheme (11). Solving (11)1 for vn+1 and insertion
into (11)2 yields n = 12nnode nonlinear algebraic equations for the semi-discrete beam.

Remark 3.2 Note that the coincidence of the discrete derivative of the constraints with the
midpoint evaluation of the constraint Jacobian in (23) does not imply that the midpoint
evaluation of the continuous null space matrix yields a viable discrete null space matrix in
general. This becomes obvious for the treatment of geometrically exact shells in Sect. 4.

Reparametrization of unknowns Due to the 6nnode orthonormality constraints (20), the
configuration space R12nnode of the semi-discrete beam is reduced to the constraint mani-
fold

Q = R3nnode ×
(
SO(3)

)nnode ⊂ R3nnode × R9nnode (33)

where SO(3) is the special orthogonal group. A reduction of the number of unknowns can
now be achieved by introducing a rotation matrix R(θα) ∈ SO(3) parametrized in terms of
θα ∈ R3, such that for α = 1, . . . , nnode and I = 1,2,3

(
dαI

)
n+1 = R

(
θα

)
·
(
dαI

)
n
. (34)

Thus the three rotational variables θα ∈ R3 play the role of the discrete generalized rota-
tional degrees of freedom (in other words they are incremental rotations) in the time inter-
val [tn, tn+1] which can be used to express the original nine unknowns associated with the
nodal directors (dαI )n+1 ∈ R3, I = 1,2,3. Concerning the rotation matrix, use is made of the
Rodrigues formula, which may be interpreted as a closed-form expression of the exponential
map (see e.g. [31]):

R(θ) = exp(θ̂) = I + sin(‖θ‖)
‖θ‖ θ̂ + 1

2

(
sin(‖θ‖/2)

‖θ‖/2

)2

(θ̂)2. (35)

When the above reparametrization of unknowns is applied, the new configuration of the
semi-discrete beam is specified by 6nnode unknowns

u =




u1

...

unnode



 , uα =
(
uαϕ, θ

α
)
∈ Uα ⊂ R3 × R3 (36)
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characterizing the incremental displacement uαϕ and incremental rotation θα in [tn, tn+1], re-
spectively. Accordingly, in the present case the nodal reparametrization qn+1 = F qn(u) ∈ Q

assumes the form

qαn+1 = F α
qαn

(
uα

)
=





ϕα
n + uαϕ

exp(θ̂α) · (dα1 )n

exp(θ̂α) · (dα2 )n

exp(θ̂α) · (dα3 )n




. (37)

Insertion of this nodal reparametrization into the d’Alembert-type scheme makes (11)3 re-
dundant and yields the n − m = 6nnode-dimensional d’Alembert-type scheme with nodal
reparametrization. Note that the present use of rotation matrix (35) is restricted to a single
time-step such that possible singularities of (35) are not an issue in practical applications.

4 Dynamics of geometrically exact shells

The present work aims at a specific constrained formulation of nonlinear shells relying on
a classical Reissner–Mindlin kinematic. In particular, the starting point is the stress resul-
tant shell model used in Simo et al. [38]. However, in essence the present approach can be
directly applied to any degenerate continuum (or continuum-based) C0 shell element. The
shell formulation is based on the three-dimensional continuum theory, where the placement
of a material point in the shell reads

x
(
ζ i, t

)
= ϕ

(
ζ 1, ζ 2, t

)
+ ζd

(
ζ 1, ζ 2, t

)
(38)

(see Fig. 2). Here ϕ(ζ 1, ζ 2, t) denotes the position vector of the actual shell mid-surface
labeled with curvilinear coordinates ζ 1, ζ 2. Furthermore, ζ 3 = ζ ∈ [−h/2, h/2] describes
the coordinate in the thickness direction d , where h is the shell thickness. In the reference
configuration, the director d(ζ 1, ζ 2,0) is defined as a unit vector perpendicular to the mid-
surface. The director field d(ζ 1, ζ 2, t) is assumed to be inextensible and takes into account

Fig. 2 Configuration of
a spatially discretized shell
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transverse shearing. The present approach essentially relies on the interpolation of the con-
figuration variable

qh
(
ζ 1, ζ 2, t

)
=

nnode∑

α=1

Nα

(
ζ 1, ζ 2)qα(t) (39)

where Nα are standard two-dimensional Lagrangean nodal shape functions. Correspond-
ing to (19), the semi-discrete shell configuration vector q(t) ∈ R6nnode consists of the nodal
configurations

qα(t) =
[
ϕα(t)

dα(t)

]

∈ R6, α = 1, . . . , nnode. (40)

Remark 4.1 It is worth mentioning that the director interpolation is a characteristic feature of
degenerate shell elements (cf. Büchter and Ramm [14]). In this connection the kinematic as-
sumption of inextensibility is typically imposed directly on the nodal directors by introduc-
ing rotational parameters for the unit sphere S2 (see, for example, Crisfield [15, Sect. 8.2]).
An inherent property of the director interpolation in (39) is that the constraints on the direc-
tor field are relaxed to the nodes of the mesh.

If rotational degrees of freedom are introduced for the description of dα ∈ S2, it is natural
to make use of nodal angular velocities and accelerations in the design of time-stepping
schemes. Representative examples can be found in Simo et al. [38] and Belytschko et al.
[4, Sect. 9.5.20]. In contrast to that, the present discretization approach for nonlinear shells
does not rely on the use of rotational parameters.

The redundant coordinates (40) have to satisfy the mint = nnode internal constraints

Φα
int

(
qα

)
=

[(
dα

)T · dα − 1
]
/2. (41)

The corresponding nodal Jacobians

Gα
int

(
qα

)
=

[
0

(
dα

)T ]
(42)

can be inserted into the total Jacobian (21).
Since the internal constraints (41) are quadratic in q , the discrete derivative of the con-

straints coincides with the midpoint evaluation of the constraint Jacobian, consisting of the
midpoint evaluation of the nodal Jacobians (42), i.e., (23) holds. For the implementation of
the constrained scheme, (9)1 is solved for vn+1 and inserted into (9)2. For the semi-discrete
shell, this leads to a nonlinear system of algebraic equations in terms of n + mint = 7nnode

unknowns.
Corresponding to (24), the temporal differentiation of (39) involves the nodal velocity

vectors

q̇α(t) =
[
ϕ̇α(t)

ḋ
α
(t)

]

∈ R6. (43)

Due to the inextensibility of the director field, each nodal director velocity ḋ
α

is restricted
to the two-dimensional tangent space TdαS

2, i.e.,

ḋ
α = θ̇ α1 dα1 + θ̇ α2 dα2 (44)
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where dα1 , dα2 span an orthonormal basis for this tangent space such that dα1 , dα2 , dα are
mutually orthonormal vectors. Consequently ḋ

α
can be written in the form (27), with the

difference that for the shell the nodal angular velocity reads

ωα = −θ̇ α2 dα1 + θ̇ α1 dα2 . (45)

4.1 Discrete null space method with nodal reparametrization

The independent generalized velocities of the semi-discrete shell are given by

s =




s1

...

snnode



 ∈ R5nnode (46)

where the independent generalized velocities of the α-th node sα ∈ R5 read

sα =





ϕ̇α

θ̇α1

θ̇ α2



 (47)

comprising the nodal translational velocity ϕ̇α ∈ R3 and the coordinates θ̇ α1 , θ̇ α2 of the nodal
director velocity given in (44). Now the redundant velocities q̇ ∈ R6nnode of the semi-discrete
shell may be expressed as q̇ = P int(q) · s where the 6nnode ×5nnode internal null space matrix
of the form (30) comprises the null space matrices associated with the α-th node P α

int(q
α)

reading

P α
int(q

α) =
[

I 03×1 03×1

03×3 dα1 dα2

]

. (48)

Discrete null space matrix With regard to condition (10), it can be easily verified that
a proper choice of the discrete null space matrix comprises the 6 × 5 nodal submatrices

Pα
int

(
qαn,q

α
n+1

)
=

[
I 03×1 03×1

03×3 d̃α1 d̃α2

]

(49)

where for κ = 1,2

d̃ακ =
(
dακ

)
n
−

(dακ )
T
n · dα

n+ 1
2

(dα)T
n · dα

n+ 1
2

dαn . (50)

The assembly of the submatrices given in (49) yields the total null space matrix pertaining
to the internal inextensibility constraints for the shell director field, which can be inserted
into the d’Alembert-type scheme (11). Solving (11)1 for vn+1 and insertion into (11)2 yields
n = 6nnode nonlinear algebraic equations for the semi-discrete shell.

Reparametrization of unknowns Due to the nnode inextensibility constraints (41), the con-
figuration space R6nnode of the semi-discrete shell is reduced to the constraint manifold

Q = R3nnode ×
(
S2)nnode ⊂ R3nnode × R3nnode . (51)
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A further size-reduction of the algebraic system to be solved can be achieved by introducing
new incremental unknowns u ∈ U ⊂ R5nnode via a reparametrization of the form (14). The
new nodal configuration of the semi-discrete shell is specified by 5 unknowns

uα =
(
uαϕ, θ

α
1 , θα2

)
∈ Uα ⊂ R3 × R2 (52)

characterizing the incremental displacement uαϕ and incremental rotational parameters
[θα1 , θα2 ]T = θα parametrizing the unit sphere. Similar to (37), in the present case the nodal
reparametrization assumes the form

qαn+1 = F α
qαn

(
uα

)
=

[
ϕα

n + uαϕ

expdαn
(Dα(qαn) · θα)

]

(53)

with the 3 × 2 matrix Dα(qαn) = [ (dα1 )n (dα2 )n ] and the following form of the exponential
map expdαn

: Tdαn S2 → S2

expdαn

(
Dα

(
qαn

)
· θα

)
= cos

(∥∥Dα
(
qαn

)
· θα

∥∥)
dαn + sin(‖Dα

(
qαn

)
· θα‖)

‖Dα(qαn) · θα‖ Dα(qαn) · θα. (54)

With this reparametrization at hand, the n − mint = 5nnode-dimensional d’Alembert-type
scheme with nodal reparametrization for the semi-discrete shell can be derived.

5 Flexible multibody system dynamics

The description of rigid bodies and spatially discretized geometrically exact beams and
shells as constrained continua in terms of the configuration variables given in (16), (19) and
(40) respectively allows their coupling to a multibody system consisting of rigid and elastic
components in a systematic way. As a generalization of (19), the configuration vectors of
all components in the multibody system are combined into the general configuration vector
q(t) ∈ Rn where n is a multiple of the actual number of spatial nodes present in the semi-
discrete system. Besides the internal constraints pertaining to the kinematic assumptions of
the specific structural element, the configuration vector of the total multibody system is sub-
ject to ‘external constraints’ Φext : Rn → Rmext . These represent a reduction of the degrees
of freedom of the total multibody system imposed by kinematic restrictions from the outset
and can be classified in Table 1.

As a consequence of the uniform description of all multibody components by means of
the DAEs (2), the external constraint functions arising in the described cases are at most

Table 1 Different types of external constraints

1 Neighboring components may be coupled by various types of joints J ∈ {R,P,C,S,E}. The coupling
reduces the relative motion of the components to the r(J ) joint velocities τ (J ) (see Table 2).

2 In the case of intersections of shells and/or beams, a rigid connection between the adjacent components
is assumed. In this case, the common nodes have three translational and three rotational degrees of
freedom, see e.g. [23, 37].

3 Standard Dirichlet boundary conditions can be imposed as external constraints.
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Table 2 Different types of joints for lower kinematic pairs with corresponding number of external constraints
m

(J)
ext and number or relative degrees of freedom r(J )

Revolute (R) Prismatic (P) Cylindrical (C) Spherical (S) Planar (E)

m
(J)
ext 5 5 4 3 3

r(J ) 1 1 2 3 3

Fig. 3 Coupling of a beam to
a rigid body

quadratic. This property simplifies the construction of a discrete null space matrix fulfill-
ing (10), since the discrete derivative of the corresponding external constraints coincides
with the midpoint evaluation of the continuous constraint Jacobian, i.e., (23) holds.

The application of the discrete null space method to the dynamics of multibody systems
comprised by rigid bodies interconnected by the joints listed in Table 2 is explained in
Part II. In particular, a systematic design of discrete null space matrices pertaining to lower
kinematic pairs is proposed there.

Three examples of multibody systems comprising elastic components are given in the
sequel before the general procedure for the treatment of arbitrary multibody systems by the
discrete null space method is outlined in Sect. 5.1.

Example 5.1 (Coupling of a beam to a rigid body)
The configuration variable of the multibody system in Fig. 3 reads

q(t) =





q1(t)
...

qnnode(t)

qrb(t)




∈ R12(nnode+1). (55)

It is subject to the internal constraints of the form (20) and the external constraints repre-
senting the coupling by a specific joint explained in Part II. Interconnecting the last beam
node to a rigid body by means of a specific joint J ∈ {R,P,C,S,E}, for example, reduces
the relative motion of the rigid body with respect to the beam to the r(J ) joint velocities
τ (J ) (see Table 2). The motion of the multibody system is characterized by the independent
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generalized velocities ν ∈ R6nnode+r(J )
with

ν =





t1

...

tnnode

τ (J )




. (56)

The 12(nnode + 1)-dimensional redundant velocity vector of the multibody system can then
be expressed via

q̇ = P (q) · ν = P int(q) · P ext(q) · ν. (57)

The 12(nnode + 1) × 6(nnode + 1) internal null space matrix is given by

P int(q) =





P 1
int(q

1) 0 · · · 0 0

0 P 2
int(q

2) · · · 0 0
...

...
. . .

...
...

0 0 · · · P
nnode
int (qnnode) 0

0 0 · · · 0 P rb
int(q

rb)




(58)

with P α
int(q

α) given in (31) for α = 1, . . . , nnode, rb and 0 denoting the 12 × 6 zero matrix.
From the treatment of kinematic pairs in Part II, it can be inferred that the 6(nnode + 1) ×
(6nnode + r(J )) external null space matrix P ext(q) reads

P ext(q) =





I 0 · · · 0 06×r(J )

0 I · · · 0 06×r(J )

...
...

. . .
...

...

0 0 · · · I 06×r(J )

0 0 · · · P 2,(J )
ext (q)




. (59)

Here I and 0 denote the 6 × 6 identity and zero matrices respectively. Different forms of
the external null space matrix P 2,(J )

ext (q) accounting for specific joints are given explicitly in
Part II.

Example 5.2 (Rigid connection of two beams) A rigid connection between the node b1 ∈
{1, . . . , n1

node} with nodal configuration vector q1,b1 ∈ R12 in the first beam (which contains
n1

node nodes) and the node b2 ∈ {1, . . . , n2
node} with nodal configuration vector q2,b2 in the

second beam (which contains n2
node nodes) gives rise to the following six constraint functions

Φ(F )
ext (q) =





ϕ2,b2 − ϕ1,b1 + (b2 − (b1

(d
1,b1
1 )T · d2,b2

2 − η1

(d1,b1
2 )T · d2,b2

3 − η2

(d1,b1
3 )T · d2,b2

1 − η3




(60)

where (b1 and (b2 point from ϕ1,b1 respectively ϕ2,b2 to the rigidly connected point and
η1, η2, η3 are constant and need to be consistent with the initial conditions. Thus there are
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no relative degrees of freedom of the node b2 with respect to the node b1, and its twist can
be calculated in terms of the twist of the node b1 via

t2,b2 = P 2,(F )
ext (q) · t1,b1 (61)

with the 6 × 6 null space matrix pertaining to the rigid connection

P 2,(F )
ext (q) =

[
I ̂(b2 − (b1

0 I

]

. (62)

Then the mapping t = P ext(q) · ν of the independent generalized velocities ν ∈
R6(n1

node+n2
node−1) to the twist of the multibody system t ∈ R6(n1

node+n2
node) via the external null

space matrix P ext(q) reads explicitly





t1,1

...

t1,b1

...

t1,n1
node

t2,1

...

t2,b2

...

t2,n2
node





=





I · · · 0 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · I · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 · · · I 0 · · · 0 0 · · · 0
0 · · · 0 · · · 0 I · · · 0 0 · · · 0
...

. . .
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · P 2,(F )
ext · · · 0 0 · · · 0 0 · · · 0

...
. . .

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · 0 · · · 0 0 · · · 0 0 · · · I





·





t1,1

...

t1,b1

...

t1,n1
node

t2,1

...

t2,b2−1

t2,b2+1

...

t2,n2
node





. (63)

Example 5.3 (Shell intersection)
In the case of shell intersections, a rigid connection between the adjacent shells is as-

sumed, see e.g. [23, 37]. Let the node α1 with nodal configuration vector qα1 ∈ R6 in the
first shell be rigidly connected to the node α2 with nodal configuration vector qα2 in the
second shell. In contrast to the rigid connection of beams described in Example 5.2, here the
rigid connection points coincide with nodes in the mesh of the semi-discrete shells. Then
the intersection gives rise to the following external constraint function

Φ(I )
ext(q) =

[
ϕα2 − ϕα1

(dα1)T · dα2 − η

]

(64)

where η= cosβ0 and β0 is the angle between dα1 and dα2 in the initial configuration. Con-
sequently, only r(I) = 1 rotational degree of freedom characterizes the motion of node α2

relative to node α1. Altogether the ‘shared’ node has three translational and three rotational
degrees of freedom and the corresponding velocities can be combined into the translational
velocity ϕ̇α1 and the angular velocity ω. According to (45), the angular velocity must fulfill

θ̇
α1
1 =

(
dα1

2

)T ·ω, θ̇
α1
2 = −

(
dα1

1

)T ·ω,

θ̇
α2
1 =

(
dα2

2

)T ·ω, θ̇
α2
2 = −

(
dα2

1

)T ·ω.
(65)
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Now the redundant velocities q̇ακ are reduced in two steps. First, the internal constraints
yield q̇ακ = P ακ

int(q
ακ ) · sακ for κ = 1,2, with the internal null space matrix given in (48).

The second step involves the 5 × 6 partial external null space matrix

P
(I )ακ
ext

(
qακ

)
=





I 03×3

01×3 (dακ2 )T

01×3 −(dακ1 )T



 . (66)

With regard to (65), the following relation holds

sακ = P
(I )ακ
ext

(
qακ

)
·
[
ϕ̇α1

ω

]
. (67)

Finally, the external null space matrices pertaining to the nodes α1, α2 in the shell intersec-
tion read

P (I )ακ
(
qακ

)
= P ακ

int

(
qακ

)
· P (I )ακ

ext
(
qακ

)
=

[
I 0

0 −d̂ακ

]

. (68)

5.1 General treatment by the discrete null space method

A generalization to arbitrary multibody systems consisting of several elastic and rigid com-
ponents can be accomplished in a straightforward way. Specific nodal configuration vec-
tors qα,qβ are coupled according to the procedure described for kinematic pairs, regardless
whether they represent a node in a spatially discretized beam, shell or a rigid body’s configu-
ration. The order in which the nodal configuration vectors are combined to the configuration
vector of the multibody system (see e.g., (55)), defines the positions of the node-specific
block-matrices in the internal null space matrix (see e.g., (58)). It also prescribes the assem-
bly of the external null space matrices representing specific couplings in the total external
null space matrix (see e.g., (59) and (63)).

A general procedure for the treatment of multibody systems consisting of rigid and elastic
components by the discrete null space method comprises the steps described in Table 3. All
alternatives for the construction of the discrete null space matrix in step (iii) yield equivalent
results, but they differ significantly in the arising computational costs. From the computa-
tional point of view, the explicit representation in alternative iii.1 is most desirable. If it is
not feasible for the problem at hand (e.g., for most closed loop systems) the semi-explicit
representation in alternative iii.3 states a reasonable compromise while the implicit repre-
sentation in alternative iii.2 requires the highest computational costs.

5.2 Numerical example: spatial slider-crank mechanism

The multibody system under consideration is a three-dimensional slider-crank mechanism.
The initial configuration is depicted in Fig. 4. It consists of a horizontal elastic beam of
length 6, which is discretized by 20 linear beam elements and characterized by the axial
and shear stiffness EA = GA = 105 and bending and torsional stiffness EI = EJ = 104.
The middle node (node 11) is rigidly connected (see Example 5.2) to the first node of the
elastic slider of length 4, which is discretized by 15 linear beam elements and character-
ized by the axial and shear stiffness EA = GA = 106 and bending and torsional stiffness
EI = EJ = 105. Assuming that the hyperelastic material behavior of the beams is governed
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Table 3 General procedure for the treatment of flexible multibody systems by the discrete null space method

(i) definition of the order in which the nodal configuration variables (regardless whether they represent
a node in a spatially discretized beam, shell or a rigid body’s configuration) are combined to the config-
uration variable of the multibody system q ∈ Rn

(ii) identification of independent constraint functions and full-rank Jacobian comprising mint internal con-
straint functions and mext external constraint functions corresponding to nc couplings or bearings

g(q) =





gint(q)

g1
ext(q)

.

.

.

gnc
ext(q)




∈ Rm, G(q) =





Gint(q)

G1
ext(q)

.

.

.

Gnc
ext(q)




∈ Rm×n

where m = mint + mext = mint + m1
ext + · · · + m

nc
ext

(iii) construction of a full-rank discrete null space matrix P(qn,qn+1) ∈ Rn×(n−m) fulfilling G(qn,qn+1) ·
P(qn,qn+1) = 0 by employing one of the alternatives outlined in the sequel

alternative iii.1 (explicit representation)
construction of a continuous null space matrix P (q) ∈ Rn×(n−m) fulfilling G(q) · P (q) = 0 by (a) or (b)

(a) velocity analysis (see (57)): successive reduction of the redundant velocities q̇ ∈ Rn to the indepen-
dent generalized velocities ν ∈ Rn−m

• internal constraints: q̇ = P int(q) · νint, νint ∈ Rn−mint

the order in which the nodal independent generalized velocities tα, sα are combined in νint is de-
fined by that of the total configuration variable specified in step (i)

• first external coupling or bearing:

q̇ = P int(q) · P 1
ext(q) · ν1, ν1 ∈ Rn−mint−m1

ext

.

.

.
• last external coupling or bearing:

q̇ = P int(q) · P 1
ext(q) · · · · · P nc

ext(q) · ν, ν ∈ Rn−m

• P (q) = P int(q) · P 1
ext(q) · · · · · P nc

ext(q)

(b) explicit analytical QR-decomposition of the transposed constraint Jacobian in terms of q: GT =
[Q1,Q2] · R yields P (q) = Q2(q) (see (8))

midpoint evaluation of the continuous null space matrix P (q
n+ 1

2
) or slight modification of the midpoint

evaluation yields P(qn,qn+1) (see Part II)

alternative iii.2 (implicit representation)
QR-decomposition of GT (qn) yields the necessary submatrices to infer P(qn,qn+1) via formula (13)

alternative iii.3 (semi-explicit representation)

• explicit representation of internal discrete null space matrix:
Pint(qn,qn+1) = P int(qn+ 1

2
)

• if possible: Pc
ext(qn,qn+1) is obtained explicitly by midpoint evaluation P c

ext(qn+ 1
2
) for c =

1, . . . , nc or by slight modification of that (see Part II)
• if not possible: QR-decomposition of

(Gc
ext(qn) ·P int(qn) ·P 1

ext(qn) · · · · ·P c−1
ext (qn))T yields implicitly Pc

ext(qn,qn+1) for c = 1, . . . , nc
via formula (13)

• P(qn,qn+1) = Pint(qn,qn+1) · P1
ext(qn,qn+1) · · · · · Pnc

ext(qn,qn+1)

(iv) solution of the resulting nonlinear algebraic system by applying one of the alternatives outlined in the
sequel

alternative iv.1 (d’Alembert-type scheme)

solution of time-stepping scheme (11) for qn+1 ∈ Rn

alternative iv.2 (d’Alembert-type scheme with nodal reparametrization)

nodal reparametrization (14) qn+1 = Fqn
(µ); solution of time-stepping scheme (11)1,2 for u ∈ Rn−m
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Fig. 4 Initial configuration of
the spatial slider-crank
mechanism

by a St. Venant–Kirchhoff-type stored energy function W(Γ , K) depending on the mater-
ial strain measures Γ , K (see [11, 30] and references therein for details), the constitutive
equations

n = ∂W

∂Γ
, m = ∂W

∂K
(69)

define the resulting axial and shear forces n and the resulting bending and torsional momenta
m respectively. The end of the slider is supported by a sliding bearing which allows it to
slide parallel to the x-axis in the xy-plane. The inertia properties of both elastic beams
are characterized by the mass density per reference length Aρ = 20 and the principal mass
moments of inertia of the cross-section M1

ρ = M2
ρ = 10. The ends of the horizontal beam

are connected via spherical joints to rigid bodies (see Example 5.1), which are modeled as
pyramids of height H = 1.5 with square bases of edge length A = 0.2 and total mass M = 1
respectively. To allow true three-dimensional motion, both rigid bodies are supported by
spherical joints fixed in space.

A force parallel to the x-axis F (t) = f (t)e1 with

f (t) =
{

1000 sin(πt) for t ≤ 2,

0 for t > 2
(70)

is applied at the end of the slider with a sinusoidal time variation for the first two seconds
of motion. After the force is removed the system undergoes free vibration, since no other
external loads are present. The results presented in the sequel have been obtained by solv-
ing the d’Alembert-type scheme (11) in conjunction with the nodal reparametrization (37).
Figure 7 shows a series of snapshots of the motion and deformation of the slider-crank mech-
anism during the first and second revolution. The cuboids of the initially horizontal beam
are coloured by a linear interpolation of the norm of the resulting momenta in the elements
whereas the slider is coloured by the norm of the resultant forces. Thereby blue represents
zero while red represents 3000. The deformations depicted in Fig. 7 are the original defor-
mations, they have not been scaled for the illustration.

The orbit of the rigid connection point between the beams in Fig. 5 also emphasizes the
large deformation the system is undergoing. It starts as a circle but soon leaves that path due
to the large bending of the initially horizontal beam. The diagrams in Fig. 6 show the stress
resultants in the rigidly connected elements for the horizontal beam on the left and for the
slider on the right-hand side. One can see that the horizontal beam undergoes much bending
deformation whereas in the slider the axial and shear forces dominate. Figure 8 shows that
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Fig. 5 Spatial slider-crank
mechanism: orbit of the rigid
connection point in the xz-plane

Fig. 6 Spatial slider-crank mechanism: stress resultants in rigidly connected elements in the initially hori-
zontal beam (left) and in the slider (right) (!t = 0.01)

after the removal of the external forces at t = 2 the total energy is conserved exactly. It also
reveals that the strain energy amounts to a substantial part of the total energy.

5.2.1 Comparison

The same problem has been calculated using the constrained scheme (9). The schemes are
equivalent, consequently the solutions are identical and both schemes fulfill the constraints
exactly. Table 4 summarizes the simulations using both schemes. A remarkable difference is
in the dimensions of the system of equations of motion. For both schemes, the first equation
is solved for vn+1 and inserted into the second equation. Then, for the present problem,
the constrained scheme requires the solution of 722 equations whereas the system for the
d’Alembert-type scheme with nodal reparametrization is 214-dimensional. This has a big
impact on the computational costs, the constrained scheme requires more than twice the
CPU-time than the d’Alembert-type scheme with nodal reparametrization to simulate 10
seconds of motion and deformation of the slider-crank mechanism. For the time-step !t =
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Fig. 7 Spatial slider-crank mechanism: snapshots of the motion and deformation at
t ∈ {0.47,0.79,2.15,3.35,4.63,5.99}

10−2 the condition number of the constrained scheme is of the order 1010 and it increases
substantially for decreasing time-steps, whereas it is constant of the order 104 or less for
arbitrary time-steps in the d’Alembert-type scheme.

5.3 Numerical example: intersecting shells

Next the flexible multibody system in Fig. 9, consisting of two rigid bodies and two elas-
tic plates is considered. The data of each elastic plate is assumed to be as follows: length
L = 2, width b = 0.2, thickness h = 0.002, Young’s modulus E = 7.3 × 1010, Poisson’s
ratio ν = 0.25 and mass density -= 2700. Ten bi-linear shell elements are used for the dis-
cretization of each plate. The plates are rigidly connected to each other at one end. This leads
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Fig. 8 Spatial slider-crank
mechanism: energy (!t = 0.01)

Table 4 Comparison of
constrained scheme to
d’Alembert-type scheme with
nodal reparametrization for the
example ‘spatial slider-crank
mechanism’

Constrained scheme d’Alembert-type scheme

Number of unknowns 722 214

n = 468, m = 254

CPU-time 2.3 1

Condition number

!t = 10−2 1010 104

!t = 10−3 1011 103

!t = 10−4 1014 103

Fig. 9 Initial configuration of
intersecting shells
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to two nodal constraints of type 2 (see Table 1) with associated constraint functions (64), and
angle β0 = 120°. The other end of each plate is rigidly attached to a rigid body leading to
further constraint equations. The inertia properties of both rigid bodies coincide with those
of spheres with mass Mϕ = 10 and radius R = 0.2.

External forces are acting on the system as indicated in Fig. 9, where

F A(t) = 2f (t)




0
2

−2



 , F B(t) = 2f (t)




4
0
4



 ,

F C(t) = 2f (t)




−2
−2
0



 .

(71)

Here the load function f (t) assumes the form of a hat function given by

f (t) =






2fmt/T for 0 ≤ t ≤ T/2,

2fm(1 − t/T ) for T/2 < t ≤ T ,

0 for t > T .

(72)

After the load period characterized by fm = 2 and T = 2, the external loads vanish com-
pletely such that the algorithmic conservation properties can be checked. The tumbling mo-

Fig. 10 Intersecting shells: snapshot of the motion and deformation at t ∈ {0,2,4,6,8,10}
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Fig. 11 Intersecting shells:
strain energy, total energy and
angular momentum L = Liei
(!t = 0.02)

tion of the system is illustrated by snapshots shown in Fig. 10. Throughout the whole calcu-
lation a constant time step !t = 0.02 has been used. It can be observed from Fig. 11 that for
t > T the algorithm conserves the total energy as well as the vector of angular momentum.
Furthermore, the constrained scheme consists of 288 equations, while the d’Alembert-type
scheme with nodal reparametrization is 216-dimensional.

6 Conclusion

The discrete null space method performs a size-reduction of the temporal discrete system of
equations of motion for mechanical systems subject to constraints. The constraint forces in-
cluding the Lagrange multipliers are eliminated from the system, proceeding analogously to
well-known size-reduction procedures from analytical mechanics. In this manner potential
conditioning problems of the constrained scheme are removed.

The d’Alembert-type scheme provides exact constraint fulfillment at the time nodes and
energy–momentum conservation along the solution. In particular because of the energy con-
servation, it is well suited for the simulation of elastic problems comprising high stiffnesses
in the context of nonlinear elasticity. It can simulate systems of many degrees of freedom
subject to a large number of constraints since it reduces the dimension of the system of equa-
tions to the minimal possible size. Holonomic as well as nonholonomic constraints (see [5])
can be treated likewise in a systematic way. For many applications, an explicit representa-
tion of the discrete null space matrix is feasible, e.g., for internal constraints in rigid bodies
or structural elements, joints in multibody systems or bearings. Due to the independence of
the condition number on the time-step, the method can cope with a wide range of time-steps.
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