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Abstract

In this paper the results in [S. Leyendecker, P. Betsch, P. Steinmann, Energy-conserving integration of constrained
Hamiltonian systems—a comparison of approaches, Comput. Mech. 33 (2004) 174–185] are extended to geometrically
exact beams. The finite element formulation for nonlinear beams in terms of directors, providing a framework for the
objective description of their dynamics, is considered. Geometrically exact beams are analysed as Hamiltonian systems
subject to holonomic constraints with a Hamiltonian being invariant under the action of SO(3). The reparametrisation
of the Hamiltonian in terms of the invariants of SO(3) is perfectly suited for a temporal discretisation which leads to
energy–momentum conserving integration. In this connection the influence of alternative procedures, the Lagrange
multiplier method, the Penalty method and the augmented Lagrange method, for the treatment of the constraints is
investigated for the example of a beam with concentrated masses.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Modelling geometrically exact beams as a special Cosserat continuum (see e.g. [2]) has been the basis for
many finite element formulations starting with the work of Simo [3]. The formulation of the beam dynamics
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as Hamiltonian system subject to internal constraints, which are associated with the kinematic assumptions
of the underlying continuous theory, has several advantages. It allows the incorporation of constraints on
configuration level as well as on momentum level in a systematic way. The spatial interpolation of the direc-
tor triad, which is constrained to be orthonormal in each node of the central line of the beam, leads to
objective strain measures in the spatially discretised configuration. This idea is developed independently
in [4,5].

While the authors in [5] restrict themselves to the specification of the weak form of balance equa-
tions for the beam in the static case, in [6] the equations of motion are given as Hamiltonian system
subject to holonomic constraints, which are realised with the Lagrange multiplier method. The Hamil-
tonian formalism provides the possibility to use different methods for the constraint enforcement. In [1]
the Lagrange multiplier method, the Penalty method and the augmented Lagrange method for the treat-
ment of holonomic constraints are compared and the results are illustrated with the examples of mass
point systems. The same methods are used here for the realisation of the internal constraints of the
beam.

In this work the semi-discrete Hamiltonian system for the beam in [6] is modified in two ways leading
to the following beneficial aspects. First of all the enforcement of the constraints is described more gen-
erally, independent of the used method, thus different methods can be inserted into the formulation. Sec-
ondly the Hamiltonian is reparametrised. Since objectivity of the strain measures is a main goal of the
formulation, it suggests itself to parametrise the rotationally invariant Hamiltonian directly in the invar-
iants of the Lie group SO(3). Consequently the strain measures are approximated objectively. This is an
ideal basis for a temporal discretisation using the concept of G-equivariant discrete derivatives by
Gonzalez [7], which leads to energy–momentum conserving time-integration of the equations of motion.
Thus a time-stepping scheme is obtained, which is objective and by construction energy–momentum
preserving.

Section 2 addresses the general description of mechanical systems as constrained Hamiltonian systems,
whereby the mentioned methods to treat the constraints and the correlation between the solutions of the
corresponding discrete systems are mentioned. In Section 3 the modelling of geometrically exact beams
as a special Cosserat continuum is presented shortly and the constrained Hamiltonian equations of motion
are formulated. Their spatial discretisation by isoparametric finite elements is presented in Section 3.3, lead-
ing to objective strain measures in the semi-discrete configuration. After the reparametrisation of the iso-
tropic Hamiltonian and a brief description of the concept of G-equivariant discrete derivatives in Section
3.4, the fully discrete equations for the beam dynamics are given using different methods for the constraint
enforcement. These are solved for the example of a beam with concentrated masses and the results, espe-
cially the constraint fulfilment, are compared in Section 4.
2. Hamiltonian systems subject to holonomic constraints

The dynamics of mechanical systems is described as Hamiltonian system subject to holonomic con-
straints. Hereby the Hamiltonian is a C1-function H : P ! R and P ¼ T �Q is a 2n-dimensional linear
phase space with the canonical (time-dependent) coordinates
zðtÞ ¼ ½qðtÞ; pðtÞ� ¼ ½q1ðtÞ; . . . ; qnðtÞ; p1ðtÞ; . . . ; pnðtÞ�; t 2 T; n 2 N.
T � R denotes a bounded interval of the time-axis. We suppose that only scleronomic and holonomic
constraints, possibly together with their temporally differentiated form, are present. Furthermore all
appearing external loads are assumed to be conservative, such that the Hamiltonian represents the total
energy of the system. For a problem of nonlinear elasticity, the total energy consists of the sum of kinetic
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energy T : P ! R and potential energy V : P ! R that can be decomposed additively into Vext, taking into
account conservative external loads, and Vint, accounting for elastic deformations. Then in terms of the
Hamiltonian vector field XH and the symplectic matrix J, Hamilton�s equations take the form
_zðtÞ ¼ XHðzðtÞÞ ¼ J � rH . ð1Þ
Let the motion of the mechanical system be constrained by m1 holonomic, scleronomic configuration
constraints ~g1ðqÞ ¼ � � � ¼ ~gm1

ðqÞ ¼ 0. Since in the Hamiltonian formalism, the configuration variable q(t)
and the corresponding conjugate momentum p(t) are dealt with on an equal footing, the consistency
condition, that the configuration constraints must be satisfied for all times, must hold. This leads to
the temporally differentiated form of the constraints d~gi=dt ¼ r~giðqÞ � _q ¼ r~giðqÞ � DpH ¼ 0, i =
1, . . . ,m1, where (1) has been taken into account. For a concise representation ~gi and d~gi=dt are com-
bined to
g1ðzÞ
..
.

gmðzÞ

2664
3775 ¼ gðzÞ ¼ 0 with gi : P ! R smooth; i ¼ 1; . . . ;m ¼ 2m1 ð2Þ
and it is assumed that 0 is a regular value of the constraints (see e.g. [8,9]).
The treatment of the constraints shall be represented generally by the scalar valued C1-functioneP : gðPÞ ! R that is required to be of the form
eP ðgðzÞÞ P 0 8z and eP ðgðzÞÞ ¼ 0 () gðzÞ ¼ 0. ð3Þ
In order to unify the domains of the functions composing H, we introduce P : P ! R with P ðzÞ ¼eP ðgðzÞÞ.
A deviation of the mechanical system from the constraint manifold C ¼ g�1ð0Þ � P is interpreted as a

contribution to the systems total energy, thus for constrained Hamiltonian systems P is added to the ener-
gies T + V, such that the now relevant augmented Hamiltonian H : P ! R reads
HðzÞ ¼ T ðzÞ þ V ðzÞ þ P ðzÞ. ð4Þ
According to the method used to treat the constraints, the additional function P takes different forms. In
[1], special forms of P and the Hamiltonian systems (1) emanating from (4) are described in detail for the
Lagrange multiplier method, the Penalty method and the augmented Lagrange method. The known equi-
valences between the solutions of the different continuous systems (see e.g. [10,11]) are carried over to the
corresponding discrete systems, that have been temporally discretised using the discrete derivative by Gonz-
alez [7]. The equivalence of the discrete Penalty system (in the limit for penalty parameters tending to infin-
ity) and of the discrete Augmented Lagrange system (in the limit for infinitely many Augmented Lagrange
iterations) to the discrete Lagrange Multiplier system is proved there. In this work, these theoretical results
are extended to the nonlinear elastic beam theory.
3. Objective formulation of the geometrically exact beam as constrained Hamiltonian system

3.1. Kinematics

In [5] Betsch and Steinmann introduce frame-indifferent finite elements for the geometrically exact beam
theory, in the sense that they inherit the objectivity of the underlying continuous beam strains. The concept



Fig. 1. Configuration of a beam.
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relies on the kinematic assumption illustrated in Fig. 1 (cf. [2]) that the placement of a material point, iden-
tified by its position vector XðhiÞ 2 R3 in the reference configuration B0, can be described by
xðha; s; tÞ ¼ uðs; tÞ þ hadaðs; tÞ. ð5Þ

Einstein summation convention is used to sum over repeated indices, Greek indices take the values 1 and

2, whereas Latin indices range from 1 to 3. ðh1; h2; h3 ¼ sÞ 2 R3 is a triple of curvilinear coordinates with
s 2 ½0; L� � R being the arc-length of the line of centroids uðs; 0Þ 2 R3. The director triad d iðs; tÞ 2 R3,
i = 1,2,3 is assumed to be orthonormal, and d1(s, t), d2(s, t) characterise the configuration of the cross-sec-
tion at s and time t.

This work is built on the formulation of the dynamics of geometrically exact beams in [6]. Therefore this
formulation is presented in short.

Remark 1. Setting up the Lagrangian L : TQ ! R, L ¼ Lðx; _xÞ where x is specified in (5) and _x denotes its
temporal derivative, one comes across the fact, that the kinetic energy is independent of _d3. Due to that
property, the Lagrangian is degenerate and it follows that p3 ¼ oL

o _d3
¼ 0. One can still pass to the

Hamiltonian formulation using Dirac�s theory (see [6,12] and references therein). Thereby the relevant
momenta are �p ¼ ðpu; p1; p2Þ. Setting �q ¼ ðu; d1; d2Þ, the Hamiltonian depends on the (reduced) phase space
variable z = z(s, t) with
z ¼ ½q; �p� ¼ ½�q; d3; �p� ¼ ½u; d1; d2; d3; pu; p1; p2� 2 R21. ð6Þ
3.2. Dynamics of the beam as Hamiltonian system subject to internal constraints

The beams kinetic energy can be written in the form
T ðzðtÞÞ ¼ 1

2

Z L

0

�p �M � �pds; ð7Þ
with the nonsingular reduced mass matrix (see Remark 1)
M ¼
AqI 0 0

0 M1
qI 0

0 0 M2
qI

264
375; ð8Þ
where I and 0 denote the 3 · 3 identity and zero matrices respectively, Aq is the mass density per reference
length and M1

q; M2
q can be interpreted as principal mass-moments of inertia of the cross-section.
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In the present case, the potential energy function is assumed to be the sum of stored and external energy
V ðzðtÞÞ ¼ V intðzðtÞÞ þ V extðzðtÞÞ ¼
Z L

0

W intðCðqÞ;KðqÞÞdsþ
Z L

0

W extðqÞds. ð9Þ
Wint is a strain energy density function expressed in terms of the objective strain measures
CðqÞ ¼ Ciei and Ci ¼ d i � u;s � di3;

KðqÞ ¼ Kiei and Ki ¼ 1
2
�ijk dk � d j;s � ½dk � d j;s�jt¼0

� �
;

ð10Þ
where dij is the Kronecker delta, �ijk is the alternating symbol and {ei} an orthonormal basis which is fixed
in space. An interpretation of these strain measures can be found in [2], whereupon C1 and C2 measure
shear strains, C3 elongation, K1 and K2 quantify flexure and K3 torsion. Wext is the density of the conser-
vative external loads.

The assumption of orthonormality of the director triad gives rise to m1 = 6 independent holonomic
internal constraints at each point of the central line of the beam
gðzÞ ¼

1
2
½d1 � d1 � 1�

1
2
½d2 � d2 � 1�

1
2
½d3 � d3 � 1�
d1 � d2

d1 � d3

d2 � d3

2666666664

3777777775
. ð11Þ
Remark 2. The investigation of several numerical examples of geometrically exact beams (e.g. in [5,6]) has
brought forward that the incorporation of the temporally differentiated form of the constraints on
momentum level (so called secondary constraints, see [12,13]) has not lead to crucial advantages (besides
the fulfilment of the secondary constraints themselves). The solution of the Hamiltonian system has not
been influenced considerably by their fulfilment. Therefore in the sequel we restrict ourselves to the
enforcement of the constraints on configuration level, although the Hamiltonian formalism would allow for
the incorporation of secondary constraints in an obvious systematic way.

The extra function P to treat the constraints is assumed to be composed of the functions v = v(s, t),
R = R(g(z(s, t))) with ðs; tÞ 2 ½0; L� �T. The product of v and R must be scalar, but their range is not spec-
ified. Further conditions on v, R can be deduced from (3). Then the contribution of the (unfulfilled) con-
straints to the energy of the beam can be calculated as
P ðzðtÞÞ ¼
Z L

0

vðs; tÞRðgðzðs; tÞÞÞds. ð12Þ
As mentioned in Remark 1 Dirac�s theory must be used to derive the equations of motion for the geo-
metrically exact beam in the Hamiltonian formalism. The transition form the Lagrangian formulation (with
a degenerate Lagrangian) to the Hamiltonian formulation is performed in detail in [6]. Along the lines de-
scribed there and neglecting the secondary constraints (see Remark 2) and treating the primary constraints
generally by the function in (12), we arrive at the following equations of motion for the geometrically exact
beam, which have to be solved for z ¼ ½q; �p� ¼ ½�q; d3; �p�:
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_�qðs; tÞ ¼ d�pT ðzðs; tÞÞ;
_�pðs; tÞ ¼ �d�qV ðzðs; tÞÞ � d�qP ðzðs; tÞÞ;
0 ¼ �dd3V ðzðs; tÞÞ � dd3P ðzðs; tÞÞ.

ð13Þ
Remark 3. If the Lagrange multiplier method is used to enforce the constraints, the system (13) is
supplemented by the constraint equation (11) resulting in an system of DAEs.
3.3. Hamiltonian formulation of the semi-discrete beam

To perform a discretisation in space, nnode nodes subdivide the central line of the beam into finite ele-
ments. We introduce isoparametric finite element interpolations using Lagrange-type nodal shape functions
NA(s) and Dirac deltas MA(s) = d(s � sA) associated with the nodal points sA 2 [0,L], A = 1, . . . ,nnode
uhðs; tÞ ¼
Xnnode
A¼1

NAðsÞuAðtÞ; dh
kðs; tÞ ¼

Xnnode
A¼1

NAðsÞdA
k ðtÞ; k ¼ 1; 2; 3;

phuðs; tÞ ¼
Xnnode
A¼1

NAðsÞpAuðtÞ; phkðs; tÞ ¼
Xnnode
A¼1

NAðsÞpAk ðtÞ; k ¼ 1; 2;

zhðs; tÞ ¼
Xnnode
A¼1

NAðsÞzAðtÞ; vhðs; tÞ ¼
Xnnode
A¼1

MAðsÞvAðtÞ.

ð14Þ
Thus the semi-discrete mechanical system is characterised by the phase vector
zðtÞ ¼ ½z1ðtÞ; . . . ; znnodeðtÞ� 2 R21nnode with zAðtÞ ¼ ½qAðtÞ; �pAðtÞ� 2 R21;

qðtÞ ¼ ½q1ðtÞ; . . . ; qnnodeðtÞ� 2 R12nnode with qAðtÞ ¼ ½uA; dA
1 ; d

A
2 ; d

A
3 �ðtÞ 2 R12;

�pðtÞ ¼ ½�p1ðtÞ; . . . ; �pnnodeðtÞ� 2 R9nnode with �pAðtÞ ¼ ½pAu; pA1 ; pA2 �ðtÞ 2 R9.

ð15Þ
Insertion of (14) and (15) into the kinetic energy (7) yields
T hðzðtÞÞ ¼ 1

2

Xnnode
A;B¼1

�pAðtÞ � ðMh
ABÞ

�1 � �pBðtÞ ¼ 1

2
�pðtÞ � ðMhÞ�1 � �pðtÞ; ð16Þ
with the consistent mass matrix
M
h
AB ¼

MABI 0 0

0 M1
ABI 0

0 0 M2
ABI

264
375;

MAB ¼
Z L

0

AqNAðsÞNBðsÞds; Ma
AB ¼

Z L

0

Ma
qNAðsÞNBðsÞds.

ð17Þ
Remark 4. Provided that the nodes are numbered appropriately, for a k-node beam element, the compact
support of the shape functions NA, A = 1, . . . ,k causes MAB ¼ M1

AB ¼ M2
AB ¼ 0 for jA � BjP k. Thus the

symmetric, global mass matrix M
h
is banded with nonzero elements on the diagonal and on k � 1

subdiagonals.
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Insertion of vh(s, t) in (14) into (12) yields
PhðzðtÞÞ ¼
Xnnode
A¼1

vAðtÞRðgðzAðtÞÞÞ; ð18Þ
i.e. the constraint fulfilment is enforced at the nodes.
After the spatial discretisation (14) and (15) has been inserted, the potential energy (9) reads
V hðzðtÞÞ ¼
Z L

0

W intðCðqhðs; tÞÞ;Kðqhðs; tÞÞÞdsþ
Z L

0

W extðqhðs; tÞÞds. ð19Þ
The special form of (19) depends on the behaviour of the material under consideration and on the exter-
nal potential.

Example 5. Let the external conservative load be the gravitation with gravitational constant g and define
gT = [0,0,g, 0,0,0,0,0,0].
V h
extðzðtÞÞ ¼

Z L

0

W extðqhðs; tÞÞds ¼
Z L

0

g �M � �qhðs; tÞds

¼
Xnnode
A¼1

g �M � �qAðtÞ
Z L

0

NAðsÞds ¼
Xnnode
A¼1

W A
extðqAðtÞÞ. ð20Þ
Example 6. Assume that the hyperelastic material behaviour of the beam is governed by the stored-energy
function
W intðC;KÞ ¼ 1

2
C �DC � Cþ 1

2
K �DK � K ; ð21Þ
with
DC ¼
GA1 0 0

0 GA2 0

0 0 EA

264
375; DK ¼

EI1 0 0

0 EI2 0

0 0 GJ

264
375. ð22Þ
Insertion into (19) yields
V h
intðzðtÞÞ ¼

1

2

X3

i¼1

DC
ii

Z L

0

ðCiðqhðs; tÞÞÞ2 ds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:

þDK
ii

Z L

0

ðKiðqhðs; tÞÞÞ2 ds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:

¼ 1

2

X3

i¼1

DC
iiC

h
i ðqðtÞÞ þ DK

ii K
h
i ðqðtÞÞ ¼

X3

i¼1

W i
intðChðqðtÞÞ;KhðqðtÞÞÞ; ð23Þ
where
W i
intðChðqðtÞÞ;KhðqðtÞÞÞ ¼ 1

2
½DC

iiC
h
i ðqðtÞÞ þ DK

ii K
h
i ðqðtÞÞ�; i ¼ 1; 2; 3. ð24Þ
The composition of (16), (18) and (19) yields the Hamiltonian for the semi-discrete beam
Hh(z(t)) = Th(z(t)) + Vh(z(t)) + Ph(z(t)) and the semi-discrete Hamiltonian system of equations, which
has to be solved for zA(t), A = 1, . . . ,nnode
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_�q
AðtÞ ¼ D�pAT

hðzðtÞÞ;
_�p
AðtÞ ¼ �D�qAV

hðzðtÞÞ � D�qAP
hðzðtÞÞ;

0 ¼ �DdA3
V hðzðtÞÞ � DdA3

PhðzðtÞÞ.
ð25Þ
3.3.1. Objectivity of the discrete strain measures

Insertion of the interpolation (14) for qh in (10) yields the discrete strain measures C(qh), K(qh), which
inherit the objectivity of the underlying geometrically exact beam theory. Consider rigid body motions
of the discrete beam configuration
ðuAÞ] ¼ cþQ � uA; ðdA
k Þ

] ¼ Q � dA
k ; ð26Þ
with cðtÞ 2 R3 and Q(t) 2 SO(3). Then for all s 2 [0,L] and i = 1,2,3 the following statements hold:
CiððqhÞ]Þ ¼ CiðqhÞ; KiððqhÞ]Þ ¼ KiðqhÞ. ð27Þ

The proof and further details can be found in [5].

3.4. Objective energy–momentum conserving time-stepping scheme

The objectivity of the strain measures relies on the fact that Ci, Ki, i = 1,2,3 are scalar-valued isotropic
functions of the vector argument q. Thus they do not depend on the full vector q, but on the scalar products
of the vectors fuI ; d I

1; d
I
2; d

I
3;u

J ; dJ
1; d

J
2 ; d

J
3jI ; J ¼ 1; . . . ; nnodeg, which are invariant with respect to super-

posed rigid body motion. Consequently, Vint is an isotropic function. Detailed inspection of the kinetic en-
ergy of the discrete beam (16) and the extra function to enforce the constraints (18) shows that these parts
of the Hamiltonian are rotationally invariant as well.

Remark 7. From (20) we see that in Example 5 V h
ext is invariant under rotations about the gravitational

axis only, whereas Th, Ph and V h
int are invariant under the action of the full Lie group SO(3). From now on

we assume that V h
ext is invariant under the action of all elements of SO(3) as well, thus the composition

Hh(z(t)) = Th(z(t)) + Vh(z(t)) + Ph(z(t)) is also invariant under the action of SO(3). Therewith we exclude
Example 5 in our theoretical considerations.

These considerations suggests to parametrise the entire isotropic Hamiltonian in the invariants of the Lie
group SO(3).

3.4.1. Invariance of the Hamiltonian under the action of SO(3)
Assume that the semi-discrete Hamiltonian Hh is invariant under the action of the Lie group SO(3), i.e.
HhðzÞ ¼ HhðQ � zÞ 8Q 2 SOð3Þ; 8z 2 P ¼ R21nnode

with Q � z ¼ ðQ � u;Q � d1;Q � d2;Q � d3;Q � pu;Q � p1;Q � p2Þ.
ð28Þ
Then Hh is an isotropic, scalar valued function with vector arguments, hence by Cauchys Representation
Theorem (cf. [2]) Hh can be expressed in terms of the invariants
Sðz1; . . . ; znnodeÞ ¼ yA � yBj1 6 A 6 B 6 nnode; yI 2 fuI ; d I
1; d

I
2; d

I
3; p

I
u; p

I
1; p

I
2g

n o
. ð29Þ
S is the set of all possible scalar products of the three-dimensional vectors composing the phase vector z in
(15) and contains 1

2
½7nnode þ 1�7nnode elements.

Remark 8. The elements of S are functionally dependent in the sense of Olver [14]. The Lie group SO(3)
operates semi-regularly on the k = 21nnode-dimensional phase space P with orbits of dimension s = 3.
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According to Theorem 2.17 in [14] there exist precisely d = k � s = 21nnode � 3 independent invariants
pi : P ! R composing the maximal set P = [p1, . . . ,pd]

T. The invariants p1(z), . . . ,pd(z) are functionally
independent if and only if the Jacobian DPðzÞ 2 Rd�21nnode is of rank d for each z 2 P. Any other invariant
pe, e > d of the group action does depend on the quotient space P=SOð3Þ ffi PðPÞ, i.e. it is of the form
pe(z) = pe(p1(z), . . . ,pd(z)).

If a maximal set P of independent invariants can be found, then the Hamiltonian can be reduced to
bHh
: PðPÞ ! R with bHhðPðzÞÞ ¼ HhðzÞ. ð30Þ
The invariance of the Hamiltonian under the action of a Lie group G (so called G-invariance) leads to the
temporal conservation of a momentum map J : P ! T �

eG along the solution of the Hamiltonian system
(25) in the sense that the momentum map

Pnnode
A¼1 JðzAðtÞÞ ¼ const for all t 2 T. For G = SO(3), the momen-

tum map is the sum of the angular momentum at each node J(zA) = qA · pA.
The set of invariants S comprises the elements
pAB
1 ðzÞ ¼ uA � uB; pAB

2 ðzÞ ¼ dA
1 � d

B
1 ; pAB

3 ðzÞ ¼ dA
2 � d

B
2 ; pAB

4 ðzÞ ¼ dA
3 � d

B
3 ;

pAB
5 ðzÞ ¼ pAu � pBu; pAB

6 ðzÞ ¼ pA1 � pB1 ; pAB
7 ðzÞ ¼ pA2 � pB2 ; pAB

8 ðzÞ ¼ uA � dB
1 ;

pAB
9 ðzÞ ¼ uA � dB

2 pAB
10 ðzÞ ¼ uA � dB

3 pAB
11 ðzÞ ¼ dA

1 � d
B
2 ; pAB

12 ðzÞ ¼ dA
3 � d

B
1 ;

pAB
13 ðzÞ ¼ dA

2 � d
B
3 ; pAB

14 ðzÞ ¼ pAu � pB1 ; pAB
15 ðzÞ ¼ pAu � pB2 ; pAB

16 ðzÞ ¼ pA1 � pB2 ;
pAB
17 ðzÞ ¼ uA � pBu; pAB

18 ðzÞ ¼ uA � pB1 ; pAB
19 ðzÞ ¼ uA � pB2 ; pAB

20 ðzÞ ¼ dA
1 � pBu;

pAB
21 ðzÞ ¼ dA

1 � pB1 ðM1
ABÞ

�1
; pAB

22 ðzÞ ¼ dA
1 � pB2 ðM2

ABÞ
�1
; pAB

23 ðzÞ ¼ dA
2 � pBu;

pAB
25 ðzÞ ¼ dA

2 � pB2 ðM2
ABÞ

�1
; pAB

26 ðzÞ ¼ dA
3 � pBu; pAB

27 ðzÞ ¼ dA
3 � pB1 ðM1

ABÞ
�1
;

pAB
28 ðzÞ ¼ dA

3 � pB2 ðM2
ABÞ

�1
; pAB

24 ðzÞ ¼ dA
1 � pB2 ðM2

ABÞ
�1 þ dA

2 � pB1 ðM1
ABÞ

�1
; ð31Þ
A, B = 1, . . . ,nnode. According to Theorem 2.17 in [14] (cf. Remark 8) one can choose d = 21nnode � 3 func-
tionally independent invariants of those given in (31), generating the maximal set P, in which the Hamil-
tonian can be parametrised.

3.4.2. Temporal discretisation—discrete derivative

The proofs of Propositions 3.2 and 3.5 in [1] hold for a class of energy-conserving time-stepping schemes
that have been derived using the discrete derivative D defined by Gonzalez [7]. The definition relies on the
properties (i) directionality and (ii) consistency and leads to an energy-conserving one-step scheme. In order
to transfer also the conservation of a momentum map along the solution of a Hamiltonian system to the
discrete system, a G-equivariant discrete derivative DG must be used, which fulfills the properties (iii) equi-
variance and (iv) orthogonality additionally to (i) and (ii). The following example of a G-equivariant dis-
crete derivative is given in [7], where also a proper definition can be found.

Example 9. Let x; y 2 P; w ¼ 1
2 ½xþ y� and f : P ! R be a smooth G-invariant function with the

associated reduced function f̂ ðPðPÞÞ ! R, i.e. f̂ ðPðxÞÞ ¼ f ðxÞ 8x 2 P. If the invariants p1, . . . ,pd are at
most quadratic, then a G-equivariant discrete derivative for f is given by
DGf ðx ; yÞ ¼ Df̂ ðPðxÞ;PðyÞÞ � DPðwÞ ¼ DTP wð Þ � Df̂ ðPðxÞ;PðyÞÞ. ð32Þ

For the discrete derivative D for example the following second-order approximation to the exact deriv-

ative at the midpoint can be used:
Df ðx; yÞ ¼ Df ðwÞ þ f ðyÞ � f ðxÞ � Df ðwÞ½y� x�
ky� xk2

½y� x�. ð33Þ
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A discrete approximation of Hamilton�s differential equations (1) is given by
znþ1 � zn ¼ hXHðzn; znþ1Þ ¼ hJ � DGHðzn; znþ1Þ; ð34Þ

where h > 0 is the time step and XH : P ! TP is the discrete Hamiltonian vector field, defined in terms of
the G-equivariant discrete derivative of the Hamiltonian DGH. It is proven in [7] that a solution of (34) is
energy–momentum conserving. This concept constitutes a special method within the family of time-step-
ping schemes emanating from finite element approximations in time. The crucial advantage is, that the for-
mulas (32) and (33) are given in closed form. Thus the conservation properties do not depend on the
numerical solution of arising time integrals. In [15] the motion of a constrained four particle system is cal-
culated using the concept of the G-equivariant discrete derivatives.
3.4.3. Fully-discrete Hamiltonian system for the beam in terms of invariants

According to the spatial finite element discretisation (14), the phase space variable (15) at time tn is given
by
zhnðsÞ ¼ zhðs; tnÞ ¼
Xnnode
A¼1

NAðsÞzAn 2 R21; n 2 N; ð35Þ
with zAn ¼ zAðtnÞ; A ¼ 1; . . . ; nnode.

Definition 10. Let the pair of indices AB, where A, B = 1, . . . ,nnode be symbolised by the single index
C ¼ 1; . . . ; n2node.

Using (16), (31) and t1 = 5, t2 = 6, t3 = 7, the kinetic energy at time tn can be written in the form
bT h
ðPðznÞÞ ¼

X3

i¼1

Xn2node
C¼1

bT h

i ðpC
ti
ðznÞÞ ¼

1

2

Xn2node
C¼1

ðMCÞ�1pC
5 ðznÞ þ ðM1

CÞ
�1pC

6 ðznÞ þ ðM2
CÞ

�1pC
7 ðznÞ; ð36Þ
where MC; M1
C; M2

C are the entries of the consistent mass matrix (17), see Remark 4.
Inspection of the constraints (11) obviously shows on which invariants in (31) the constraints at the node

A do depend on. With p1 = 2, p2 = 3, p3 = 4, p4 = 11, p5 = 12, p6 = 13 the function to treat the constraints
(18) at time tn can be written as
bP hðPðznÞÞ ¼
Xnnode
A¼1

vAðtnÞRðĝ1ðpAA
p1
ðznÞÞ; . . . ; ĝ6ðpAA

p6
ðznÞÞÞ. ð37Þ
With C1 = 8, C2 = 9, C3 = 10, k1 = 13, k2 = 12, k3 = 11 the objective strain measures C(qh), K(qh) at time
tn take the form
bCiðPðzhnÞÞ ¼
Xnnode
A;B¼1

NAðsÞN 0
BðsÞpAB

Ci
ðznÞ � di3; i ¼ 1; 2; 3;

bKiðPðzhnÞÞ ¼
Xnnode
A;B¼1

NAðsÞN 0
BðsÞ½pAB

ki
ðznÞ � pAB

ki
ðz0Þ�; i ¼ 1; 2; 3.

ð38Þ
Assuming that also the external energy density function is invariant under the action of SO(3) (cf. Re-
mark 20), thus W extðzhnÞ ¼ bW extðPðzhnÞÞ, the potential energy (19) at time tn reads
bV hðPðznÞÞ ¼
Z L

0

W intðbCðPðzhnÞÞ; bK ðPðzhnÞÞÞdsþ
Z L

0

bW extðPðzhnÞÞds. ð39Þ
Of course the integrals transform to sums over the nodes due to the spatial discretisation (35).
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Summarising, the SO(3)-invariant Hamiltonian of the beam at time tn is of the form
HhðznÞ ¼ bH hðPðznÞÞ ¼ bT hðPðznÞÞ þ bV hðPðznÞÞ þ P̂
hðPðznÞÞ. ð40Þ
Using (40) to set up the G-equivariant discrete derivative of the Hamiltonian in (34), one arrives at the
fully-discrete constrained Hamiltonian equations for the dynamics of the geometrically exact beam, which
have to be solved for zAnþ1 ¼ ½qAnþ1; �p

A
nþ1�; A ¼ 1; . . . ; nnode
�qAnþ1 � �qAn ¼ hDG
�pAT

hðzn; znþ1Þ;

�pAnþ1 � �pAn ¼ �h DG
�qAV

hðzn; znþ1Þ þ DG
�qAP

hðzn; znþ1Þ
h i

;

0 ¼ �h DG
dA3
V hðzn; znþ1Þ þ DG

dA3
Phðzn; znþ1Þ

h i
.

ð41Þ
3.5. Overview

The following table gives an overview over the phase vector, the Hamiltonian and the Hamiltonian equa-
tions corresponding to the continuous, the semi-discrete and the fully discrete case respectively.
Phase vector
 Hamiltonian
 H. e.
Continuous
 zðs; tÞ ¼ ½qðs; tÞ; �pðs; tÞ� 2 R21 (6)
 H(z) = T(z) + V(z) + P(z) (4)
 (13)
h
Xnnode

A 21
 h h
Semi-
discrete
z ðs; tÞ ¼
A¼1

NAðsÞz ðtÞ 2 R (14)

zAðtÞ ¼ ½qAðtÞ; �pAðtÞ� 2 R21;A ¼ 1; . . . ; nnode

zðtÞ ¼ ½z1ðtÞ; . . . ; znnodeðtÞ� 2 R21nnode
Hðz Þ ¼ H ðzÞ ¼
T hðzÞ þ V hðzÞ þ PhðzÞ
(16) (19) (18)
(25)
Fully
discrete
 zhnðsÞ ¼

Xnnode
A¼1

NAðsÞzAn 2 R21; n 2 N (35)

zAn ¼ ½qAn ; �pAn � 2 R21; A ¼ 1; . . . ; nnode

zn ¼ ½z1n; . . . ; znnoden � 2 R21nnode
HðzhnÞ ¼ bHh
ðPðznÞÞ (40)
 (41)
3.6. Time-stepping scheme for the beam dynamics

In this section, we deduce the actual fully discrete Hamiltonian equations for the dynamics of the geo-
metrically exact beam, which is a nonlinear, objective, energy–momentum-conserving one-step scheme.
According to (41), we have to calculate G-equivariant discrete derivatives of T, V and P. We apply directly
the formulas (32) and (33), given in Example 9 and denote the midpoint of two subsequent states of the
beam by znþ1

2
¼ 1

2
½znþ1 þ zn�. For the kinetic energy (36) we obtain the following:
DG
�pAT

hðzn; znþ1Þ ¼
X3

i¼1

Xn2node
C¼1

DT̂
h

i ðpC
ti
ðznÞ; pC

ti
ðznþ1ÞÞ � DpC

ti
ðznþ1

2
Þ. ð42Þ
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Since T̂
h

i : Rþ ! R, using (33) we have
DT̂
h

i ðpC
ti
ðznÞ; pC

ti
ðznþ1ÞÞ ¼

T̂
h

i ðpC
ti
ðznþ1ÞÞ � T̂

h

i ðpC
ti
ðznÞÞ

pC
ti
ðznþ1Þ � pC

ti
ðznÞ

¼: SC
T̂ i
; i ¼ 1; 2; 3. ð43Þ
From (36) we can calculate
SC
T̂ 1

¼ 1

2
M�1

C ; SC
T̂ 2

¼ 1

2
ðM1

CÞ
�1
; SC

T̂ 3
¼ 1

2
ðM2

CÞ
�1. ð44Þ
Remark 11. For many methods to treat the constraints (e.g. Lagrange multiplier method,
Penalty method, augmented Lagrange method), (37) can be transformed to P̂

hðPðznÞÞ ¼Pm
i¼1

Pnnode
A¼1 P̂

h
i ðpAApi ðznÞÞ and the G-equivariant discrete derivative can be calculated along the lines of

(42) and (43). For the three methods mentioned, the scalars SAP̂ i
, i = 1, . . . , 6 will be specified in the

following subsections accordingly.

Because of the parametrisation of the Hamiltonian and particularly the stored energy in the quadratic
invariants and the special strain measures (10) in the beam theory being in use in this work, an energy–
momentum time-stepping scheme is obtained by application of the G-equivariant discrete derivative (32),
(33) to the stored energy with f ¼ W int � ½bC; bK � and p = P.

Remark 12. Due to the beam theory at hand and the parametrisation in the invariants, a special
modification in the temporal discretisation of the stored energy terms to obtain an energy-conserving
integrator (e.g. cG(1)-method in connection with the assumed strain modification in [16,17] or interpolation
of the strains at different times instead of evaluation of the strains at the temporally interpolated
configuration in the case of nonlinear elasticity in [18,19]) is unnecessary here.

Example 13. In the Example 6 of St. Venant-Kirchhoff material, the stored energy can be transformed into

a sum of terms, each being dependent on one scalar-valued invariant bV h

intðPðznÞÞ ¼
P3

i¼1W
i
intðbCh

i ðpCiðznÞÞ;bKh

i ðpkiðznÞÞÞ, thus the G-equivariant discrete derivative can be calculated along the lines of (42) and (43).

Therewith (41) can be further specified. The system of equations is implemented using the three following
methods to treat the constraints. The numerical results for the example of a beam with concentrated masses
are presented in Section 4.

3.6.1. Lagrange multiplier method

Using the Lagrange multiplier method, the function representing the treatment of the constraints takes
the form PLag(z) = kg(z) with the Lagrange Multiplier k 2 Rm. Here the number of constraints at each node
is m1 = 6 and no secondary constraints are taken into account (see Remark 2), i.e. m = m1. Thus in (12) we
have
vðs; tÞ ¼ kðs; tÞ; Rðgðzðs; tÞÞÞ ¼ gðzðs; tÞÞ ð45Þ
and insertion of the interpolation (14) yields (corresponding to (18))
Ph
LagðzðtÞÞ ¼

Xnnode
A¼1

kAðtÞgðzAðtÞÞ; ð46Þ
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that can be written in terms of the invariants at time tn as follows:
P̂
h

LagðPðznÞÞ ¼
X6

i¼1

Xnnode
A¼1

kAi ðtnÞĝiðpAA
pi
ðznÞÞ. ð47Þ
In the G-equivariant discrete derivative DGPh
Lag, the scalars corresponding to (43) take the following

values:
SA
P̂Lagi

¼ 1

2
kAi ; i ¼ 1; 2; 3; A ¼ 1; . . . ; nnode;

SA
P̂Lagi

¼ kAi ; i ¼ 4; 5; 6; A ¼ 1; . . . ; nnode.
ð48Þ
Remark 14. The use of Dirac deltas as shape functions for v = k in (14) allows the multipliers to be
discontinuous across the space element boundaries. We allow discontinuity of the multipliers across time
elements as well, particularly we assume the multipliers at each node to be constant during the time interval
[tn, tn+1] and to have a jump at the points of time tn. For this reason all multipliers appearing in the time-
stepping scheme are evaluated at the new time tn+1 and their time dependence is not indicated in (48).

Remark 15. If the Lagrange multiplier method is used to enforce the constraints, the time-stepping system
(41) is supplemented by the constraint equations g(zn+1) = 0 resulting in an system of DAEs. Obviously for
a solution of this system of equations, the constraints are fulfilled exactly (see [1] for further details).
3.6.2. Penalty method

The penalty potential being in use here is composed by a spatially and temporally constant penalty
parameter l 2 R and the squared norm of the constraints
vðs; tÞ ¼ l; Rðgðzðs; tÞÞÞ ¼ kgðzðs; tÞÞk2. ð49Þ

The same steps as in the previous paragraph for the Lagrange multiplier method lead to
Ph
PenðzðtÞÞ ¼

Xnnode
A¼1

lkgðzAðtÞÞk2 ð50Þ
and finally to
P̂
h

PenðPðznÞÞ ¼
X6

i¼1

Xnnode
A¼1

lĝ2i ðpAA
pi
ðznÞÞ. ð51Þ
The scalars (corresponding to (43)) arising in DGPh
Pen result in
SA
P̂Peni

¼ l
4

pAA
pi
ðznþ1Þ þ pAA

pi
ðznÞ � 2

h i
; i ¼ 1; 2; 3; A ¼ 1; . . . ; nnode;

SA
P̂Peni

¼ l pAA
pi
ðznþ1Þ þ pAA

pi
ðznÞ

h i
; i ¼ 4; 5; 6; A ¼ 1; . . . ; nnode.

ð52Þ
Remark 16. For solutions of (41) using the Penalty method with increasing penalty parameters, the
constraint fulfilment improves and in the limit for l ! 1 the solutions converge to that of the
corresponding Lagrange Multiplier system, which fulfils the constraints exactly (see [1] for the proof and
further details).
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3.6.3. Augmented Lagrange method

In the augmented Lagrange method the function to treat the constraints is the sum of those just
described
vðs; tÞ ¼ kkðs; tÞ
l

" #
; Rðgðzkðs; tÞÞÞ ¼

gðzkðs; tÞÞ
kgðzkðs; tÞÞk2

" #
. ð53Þ
Therewith it ensues
Ph
AugðzkðtÞÞ ¼

Xnnode
A¼1

kA;kðtÞgðzA;kðtÞÞ þ lkgðzA;kðtÞÞk2 ð54Þ
and finally
P̂
h

AugðPðzknÞÞ ¼
X6

i¼1

Xnnode
A¼1

kA;ki ðtnÞĝiðpAA
pi
ðzknÞÞ þ lĝ2i ðpAA

pi
ðzknÞÞ;

kA;0ðt0Þ ¼ 0 2 R9; kA;0ðtnÞ ¼ kA;kmaxðtn�1Þ;

kA;kþ1ðtnÞ ¼ kA;kðtnÞ þ lĝðpAA
p1
ðzknÞ; . . . ; pAA

p6
ðzknÞÞ; A ¼ 1; . . . ; nnode.

ð55Þ
Accordingly the scalars corresponding to (43) in DGPh
Aug are composed by
SA;k
P̂Augi

¼ 1

2
kA;ki þ l

4
pAA
pi
ðzknþ1Þ þ pAA

pi
ðznÞ � 2

h i
; i ¼ 1; 2; 3; A ¼ 1; . . . ; nnode;

SA;k
P̂Augi

¼ kA;ki þ l pAA
pi
ðzknþ1Þ þ pAA

pi
ðznÞ

h i
; i ¼ 4; 5; 6; A ¼ 1; . . . ; nnode.

ð56Þ
Remark 17. The difference between the augmented Lagrange method and the previously described
methods is that first of all the multipliers are not determined as variables when the system of equations is
solved, but (41) with a fixed value kk is solved for zknþ1. Secondly the improvement in the constraint
fulfilment is achieved by iteration: the multipliers are updated according to (55)3 and the corresponding
solution zkþ1

nþ1 of (41) fulfils the constraints better than zknþ1. In the limit for an infinite number of iterations
(k ! 1) the sequence of solutions converges to the solution of the corresponding Lagrange Multiplier
system, which fulfils the constraints exactly and the sequence of multipliers converges to the true Lagrange
Multiplier (see [1] for the proof and further details).
4. Numerical example: beam with concentrated masses

The following example represents a three-dimensional extension of the plane version previously dealt
with in [20,6]. A verification of the good simulation suitability of the present formulation could be achieved
by recalculation of the results documented in these works. However a three-dimensional loading is chosen
here to demonstrate the performance of the present formulation in general.

The initial configuration of a beam with concentrated masses can be seen in Fig. 2. For this problem the
following parameters have been used: half-length L = 1 m, concentrated masses M = 10 kg and m = 1 kg,
mass density per reference length Aq = 0.27 kg/m, mass moment of inertia of the cross-section
Mq = 9 · 10�8 kg/m, beam stiffness parameters EI = 0.16 Nm2, EA = 4.8 · 105 N, GJ = 0.1230769 Nm2

and GA = 1.84615 · 105 N. The temporally bounded external loading has the form



Fig. 2. Beam with concentrated masses: initial configuration.
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Fa ¼ f ðtÞPa

P1 ¼ 1.3Ne1 þ 1.0Ne2 þ 0.8Ne3;

P2 ¼ �1.2Ne1 � 1.6Ne2 þ 1.0Ne3;
ð57Þ
with the function
f ðtÞ ¼
½1� cosð2p=T Þ�=2 f€ur t 6 T ;

0 f€ur t > T

�
ð58Þ
and T = 0.5 s.
No other external loads are present in this example. The numerical results are based on a constant time

step h = 0.01 s and an equidistant spatial discretisation of the central line of the beam by 22 linear beam
elements. The discretised configurations of the beam (calculated using the Lagrange multiplier method)
at t = 0 s, t = 2 s, t = 15 s can be seen in Fig. 5.

4.1. Lagrange multiplier method

Using the Lagrange multiplier method the Hamiltonian equations (41) supplemented by the constraint
equations g(zn+1) = 0 are solved. The conservation properties of the algorithm can be checked in Fig. 3,
after the vanishing of the external loads at t = 0.5 s, the total energy and the angular momentum are con-
stant. The evolution of the conjugate stress resultants n ¼ oW

oC
; m ¼ oW

oK
at X1 = L/2 is depicted in Fig. 4. Of

course using the Lagrange multiplier method the constraints are fulfilled numerically exactly, the error is of
the order 10�16. Although being unaccounted for, the constraints on momentum level are fulfilled up to the
order 10�4.

The evolution of the energy, the angular momentum and the stress resultants can be compared qualita-
tively to those of the two-dimensional example in [20,6].

4.2. Penalty method

The deformation of the beam with identical initial configuration and loading is calculated using the Pen-
alty method with penalty parameter l = 107. The evolution of the energy and angular momentum as well as
of the conjugate stress resultants at X1 = L/2 can not be distinguished optically from those in Figs. 3 and 4.
The error of the fulfilment of the constraints on configuration level is of the order 10�8 and on momentum
level of the order 10�5 (although the secondary constraints are not enforced in the calculation) as pictured
in Fig. 6 exemplarily for node 2 (second node from the left). Also for this node, the linear decrease of the
configuration constraint error for increasing penalty parameters can be seen in Fig. 7. This verifies the first
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statement in Remark 16. The second statement, that the solution of (41) using the Penalty method con-
verges to that of (41) using the Lagrange multiplier method is visualised in Fig. 8 for the displacements
of node 12 (middle node) and of node 23 (node on the right of the beam).



Fig. 5. Beam with concentrated masses: discrete configuration at t = 0 s, t = 2 s, t = 15 s.
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4.3. Augmented Lagrange method

The same beam deformation problem is calculated using the augmented Lagrange method with l = 104.
Again the evolution of the energy and angular momentum as well as of the conjugate stress resultants at
X1 = L/2 can not be distinguished optically from those in Figs. 3 and 4. The error of the fulfilment of
the constraints at each time step at node 2 (second node from the left) on configuration level is of the order
10�7 and on momentum level of the order 10�4 (although the secondary constraints are not enforced in the
calculation). All statements in Remark 17 are verified by the next three diagrams. Fig. 9 demonstrates the
decrease in the error of the constraints at node 2 (second node from the left), within 4 Augmented Lagrange
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Fig. 6. Algorithmic fulfilment of the constraints at node 2, l = 107.
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iterations the error drops under the desired tolerance of 10�7 (of course, the constraint errors at all nodes
are considered in the convergence criterion for the Augmented Lagrange iteration within one time step).
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The convergence of the displacements of node 12 (middle node) and of node 23 (node on the right of the
beam) calculated by solving (41) using the augmented Lagrange method to those calculated by solving (41)
using the Lagrange multiplier method is depicted in Fig. 10. Similarly the multipliers at node 2 (second
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node from the left) approach the true Lagrange Multipliers during the Augmented Lagrange iteration, as
can be seen in Fig. 11.
5. Conclusions

The formulation of semi-discrete equations of motion for geometrically nonlinear beam dynamics as
constrained Hamiltonian system states an unified framework for the use of different methods for the con-
straint enforcement and for the consideration of different types of constraints. Internal constraints, which
are associated with the kinematic assumptions of the underlying continuous formulation, as well as external
constraints, realising joints between (rigid or flexible) components of multibody systems, can be dealt with
in a similar, systematic way.
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Since the director triad at each point of the central line of the beam represents the configuration variable,
and the semi-discrete strain measures do depend on scalar products of those vectors, these strain measures
are objective. Furthermore assuming that the total Hamiltonian is invariant with respect to proper rota-
tions, it can be parametrised in the invariants of the Lie group SO(3), what states an ideal basis for a tem-
poral discretisation using the concept of G-equivariant discrete derivatives by Gonzalez [7]. Altogether this
leads to objective energy–momentum conserving time-integration of the equations of motion.

The propositions about the equivalence of the discrete Penalty system (in the limit for increasing penalty
parameters) and of the discrete Augmented Lagrange system (in the limit for infinitely many iterations) to
the discrete Lagrange Multiplier system proved in [1] could be illustrated for spatially discretised problems
at the example of a beam with concentrated masses. Thereby it is interesting to note, that the secondary
constraints on momentum level were fulfilled equally well for the different methods to treat the constraints,
although only the configuration constraints have been enforced in the equations of motion.
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