
Energy-conserving integration of constrained Hamiltonian
systems – a comparison of approaches

S. Leyendecker, P. Betsch, P. Steinmann

Abstract In this paper known results for continuous
Hamiltonian systems subject to holonomic constraints are
carried over to a special class of discrete systems, namely
to discrete Hamiltonian systems in the sense of Gonzalez
[6]. In particular the equivalence of the Lagrange Multi-
plier Method to the Penalty Method (in the limit for
increasing penalty parameters) and to the Augmented
Lagrange Method (for infinitely many iterations) is shown
theoretically. In doing so many features of the different
systems, including dimension, condition number, accu-
racy, etc. are discussed and compared. Two numerical
examples are dealt with to illustrate the results.
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1
Introduction
We study Hamiltonian systems subject to holonomic
constraints in this work. Three well established methods to
treat holonomic constraints, the Lagrange Multiplier
Method, the Penalty method and the Augmented Lagrange
method are presented and the correlations are reviewed.
The known equivalences between the solutions of the
different continuous systems are carried over to the
corresponding discrete systems.

The quality of a numerical integrator can be gauged by
its vicinity to physical reality and by its numerical stabil-
ity. Both are influenced heavily by the inheritance of the
conservation properties or first integrals arising from
symmetries of the solution of the underlying continuous
Hamiltonian system. The use of a discrete derivative
defined by Gonzalez [6] leads to an energy-conserving
time stepping scheme. Further specification of the discrete
derivative by an equivariance property yields a subclass of
the energy-conserving schemes, called energy-momentum
schemes. Besides the energy, these schemes conserve a
momentum map for a mechanical system with symmetry.
The correlations between the solutions of the discrete

systems using the methods mentioned to enforce the
constraints are investigated for the energy-conserving
schemes, since they are more general and notationally
simpler. Certainly the proofs hold for the special case of
energy-momentum schemes.

Motivated by the way Petzold and Loetstedt [11] calculate
the order of the condition number of an iteration scheme,
we give the condition numbers of the iteration matrices for
the three schemes under consideration. It turns out, that for
decreasing time steps, the Lagrange Multiplier scheme
becomes more and more ill-conditioned, while the condi-
tion number of the other two schemes improves.

An outline of the remainder of this paper is as follows:
in Sect. 2 the deduction of Hamiltonian systems on sym-
plectic manifolds is shortly outlined and the three methods
to treat holonomic constraints and their correlations are
reviewed. Section 3 shows the main aspects of the concept
of discrete derivatives and sets up the corresponding three
discrete Hamiltonian systems. The equivalence of the
discrete Penalty system (in the limit for penalty parame-
ters tending to infinity) and of the discrete Augmented
Lagrange system (in the limit for infinitely many Aug-
mented Lagrange iterations) to the discrete Lagrange
Multiplier system is proved in Sects. 3.1.2 and 3.1.3,
respectively. The theoretical results are illustrated
numerically with the motion of a double spherical pen-
dulum and an example of rigid body dynamics in Sect. 4.
The paper concludes with a short comparison of some
aspects of the investigated methods and conclusions.

2
Hamiltonian systems
In the essential part of this work, mechanical systems are
considered in a 2n-dimensional linear phase space P with
the canonical coordinates
z ¼ ðq; pÞ ¼ ðq1; . . . ; qn; p1; . . . ; pnÞ, where q denotes the
position, while p represents the momentum. A Hamiltonian
is a C1-function H : P! R. Writing DH for the derivative
of H, where the components are collected as follows:

oH

oq1
; . . . ;

oH

oqn
;
oH

op1
; . . . ;

oH

opn

� �T

¼ DqHðzÞ;DpHðzÞ
� �T

¼ DTHðzÞ ;

Hamilton’s equations in classical mechanics take the form

_qðtÞ ¼ DpH

_pðtÞ ¼ �DqH :
ð1Þ
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It is well known that the Hamiltonian is conserved along
the solution zðtÞ of (1). Since the Hamiltonian at any point
z 2 P usually consists of the sum of kinetic energy
T : P! R and potential energy U : P! R, the solution
of (1) is called energy-conserving.

For our purposes we take the following (usual)
assumptions on the energy-functions:

T;U 2 C1 P;Rð Þ
TðpÞ � 0 8 p and TðpÞ ¼ 0 () p ¼ 0

U is bounded from below, i.e.

9U� 2 R with inf
q2Q

UðqÞ � U� > �1 : ð2Þ

Remark 2.1 In order not to lose the energy-conservation
property of the solution of Hamilton’s equations when
discretizing (1) to a time-stepping scheme, the concept of
discrete derivatives by Gonzalez [6] is introduced in
Sect. 3. It relies on a more general view of Hamilton’s
equations. Thus the following description of their
embedding into the setting of symplectic manifolds
following the presentation of [10] is required.

Let’s consider mechanical systems in the n-dimensional
configuration manifold Q. In the Hamiltonian view of
mechanics, the cotangent bundle P ¼ T�Q with the local
coordinates z ¼ ðq1; . . . ; qn; p1; . . . ; pnÞ and its intrinsic
symplectic structure x ¼ dqi ^ dpi represents the
2n-dimensional phase space.

The nondegenerate symplectic structure on P is used to
assign a vector field XH to the Hamiltonian H : P! R via

iXH
x ¼ dH ; ð3Þ

the Hamiltonian vector field. Here iXH x denotes the inte-
rior product (sometimes called contraction) of the vector
field XH (interpreted as a 1-form) and the 2-form x. dH
denotes the exterior derivative of the Hamiltonian result-
ing in a 1-form. For z 2 P, (3) can be written locally as

xb
z XH zðtÞð Þð Þ ¼ dHðzÞ : ð4Þ

Hamilton’s equations are the evolution equations

_zðtÞ ¼ XH zðtÞð Þ : ð5Þ

2.1
Hamiltonian systems subject to holonomic constraints
Let the motion of the mechanical system be restrained by
m holonomic constraints on configuration level:

g1ðqÞ

..

.

gmðqÞ

0
BB@

1
CCA ¼ gðqÞ ¼ 0 with gi : Q! R smooth,

i ¼ 1; . . . ;m : ð6Þ

Remark 2.2 Any constraint on momentum level
(especially ‘hidden’ constraints, obtained by differentiating
the configuration-constraints with respect to time) can
be dealt with similarly as described in the following, since

the variables q and p are dealt with on an equal footing. In
[2] Betsch and Steinmann investigate the influence of a
projection technique to enforce the ‘hidden’ constraints on
the solution of a Hamiltonian system using Lagrange
Multipliers. Besides a prevention of oscillatory behaviour
in the multipliers and the fulfillment of the ‘hidden’
constraints themselves, the method did not influence the
solution substantially. For these reasons the investigation
of constraints on momentum level is not included in
this work.

An important assumption for the unique solvability of
the constrained problem is that 0 is a regular value of the
constraints (see, for example, [12, 9]), i.e.

rank DgðqÞð Þ ¼ m 8 q 2 Q with gðqÞ ¼ 0 : ð7Þ
Then C ¼ g�1ð0Þ � P is a submanifold in the phase space,
the ð2n�mÞ-dimensional constraint manifold.

Remark 2.3 In the following, three alternative methods
to treat holonomic constraints, the Lagrange Multiplier
Method, the Penalty Method and the Augmented
Lagrange Method will be presented and the correlations
are reviewed. The possibility to choose generalized
coordinates, which reduce the system to the minimal
number of equations necessary to describe the dynamics
of the system, is skipped here because it has a crucial
drawback: a transformation between the canonical coor-
dinates and the generalized coordinates has to be found.
This transformation may be very complicated – it might
even not exist e.g. in the case of closed loop systems. As
a consequence of the introduction of generalized
coordinates, the resulting equations of motion are quite
involved in general.

The treatment of the constraints shall be represented
generally by the scalar valued C1-function P : gðQÞ ! R
that is required to be at least linear in g and of the form

PðgðqÞÞ � 0 8 q and PðgðqÞÞ ¼ 0() gðqÞ ¼ 0 :

ð8Þ
For constrained Hamiltonian systems P is added to the
energies T þ U , such that the now relevant augmented
Hamiltonian H : P! R reads
Hðq; pÞ ¼ TðpÞ þ UðqÞ þ PðgðqÞÞ.

In order to unitise the domains of the functions com-
posing H, we introduce ~T; ~U; ~P : P! R and ~g : P! Rm

with the properties

~TðzÞ ¼ TðpÞ; ~UðzÞ ¼ UðqÞ;
~PðzÞ ¼ Pð~gðzÞÞ with ~gðzÞ ¼ gðqÞ ð9Þ

and Dq
~TðzÞ ¼ Dp

~UðzÞ ¼ Dp
~PðzÞ ¼ 0: ð10Þ

2.1.1
Lagrange Multiplier Method
If the Lagrange Multiplier Method is used, the additional
function P takes the form

PLagðgðqÞÞ ¼ hk; gðqÞi ; ð11Þ
where k 2 Rm and h:; :i denotes the standard inner
product in Rm.
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The Hamiltonian system (1) is augmented by the
constraint equations and reads

_q ¼ oT

op

_p ¼ � oU

oq
� DTgðqÞk

0 ¼ gðqÞ :

ð12Þ

The Lagrange Multiplier Theorem guarantees the equiva-
lence of the system (12) to (1) subject to gðqÞ ¼ 0. Obvi-
ously, for a solution of (12), the constraints are fulfilled
exactly. The system consists of 2nþm equations and is to
be solved for the 2nþm variables ðq; p; kÞ. For consistent
initial data (12) has a unique solution, see [12, 8].

2.1.2
Penalty Method
The Penalty Method approximates the constrained prob-
lem by an unconstrained one. A potential is introduced (in
terms of the extra function P), which grows large when the
system deviates from the constraint manifold. The penalty
parameter determines the severity of the violation of the
constraints.

Beyond (8), other conditions on P to be a penalty
function are:

P must be convex ;

P must be at least quadratic in g :
ð13Þ

The penalty function we will work with is of the form
PPenðgðqÞÞ ¼ lRðgðqÞÞ with the penalty parameter l 2 Rþ

and the function R such that (8) and (13) are fulfilled.
According to (1) the Hamiltonian system reads:

_q ¼ oT

op

_p ¼ � oU

oq
� lDTgðqÞDR gðqÞð Þ :

ð14Þ

A widely-used example of a penalty function is

PPenðgðqÞÞ ¼ l
��gðqÞ

��2
; l 2 Rþ.

Under the assumptions taken, we know from standard
ODE-theory that the 2n-dimensional system (14) is
uniquely solvable for given initial data.

In [13] Rubin and Ungar prove an important result for
constrained motion described by Euler–Lagrange
equations. They show that for a sequence of penalty
parameters lsð Þs2N with lims!1 ls ¼ 1, the limit point
�qðtÞ; �_qðtÞÞ ¼
�

lims!1 qsðtÞ; _qsðtÞð Þ of the sequence of solu-
tions – where qsðtÞ; _qsðtÞð Þ solve the penalty system corre-
sponding to ls – fulfills the constraints. Furthermore they
show that there exists a multiplier k, such that �qðtÞ; �_qðtÞ; k

� �
solve the corresponding Lagrange Multiplier system.

In [5] Bornemann and Schütte carry on with that issue
and offer an abstract approach relying on the weak con-
vergence in the sense of distributions. They even give
explicitly the sequence converging (weakly in the sense of
distributions) to the correct Lagrange Multiplier.

In Sect. 3.1.2, we show a corresponding result for a
certain class of discrete Hamiltonian systems.

In practice, the Penalty Method entails a number of
drawbacks: (i) Moderate penalty parameters do usually
allow unacceptable constraint violation, (ii) for fixed time
step size, increasing penalty parameters result in increas-
ingly ill-conditioned systems and (iii) large penalty
parameters lead to stiff systems which may cause unstable
numerical solutions.

2.1.3
Augmented Lagrange Method
The third approach investigated herein is the Augmented
Lagrange Method. In this connection we refer to [4] for a
physically insightful interpretation in the context of
dynamical systems and [1, 9] for a general introduction.
The Augmented Lagrange Method can be regarded as a
combination of a Penalty Method and a dual method. Dual
methods are based on the idea that it is the Lagrange
Multipliers which are the fundamental unknowns in a
constrained problem. They have meaningful interpreta-
tions such as the costs to keep the system on the constraint
manifold.

The extra function to treat the constraints by the
Augmented Lagrange Method is a combination of those
used in the previous methods:

PAugðgðqÞÞ ¼ hkk; gðqÞi þ l RðgðqÞÞ ; ð15Þ
with the difference that l 2 Rþ needs not tend to infinity
to fulfill the constraints. Instead of that it may remain of
relatively moderate value and the improvement in the
constraints is achieved by passing through an extra loop.
The multipliers are not determined as an unknown
variable, but during an iteration process. Starting with
k0 ¼ 0, in each iteration the 2n-dimensional Hamiltonian
system ð16Þ1;2 is solved for ðqk; pkÞ with a fixed value of
kk. Then the multiplier is updated according to the
Uzawa-like rule ð16Þ3.

_qk ¼
oT

opk

_pk ¼ �
oU

oqk

� DTgðqkÞkk � lDTgðqkÞDR gðqkÞð Þ

kkþ1 ¼ kk þ lgðqkÞ :

ð16Þ

In each iteration the constraints are less violated and the
iterations stop as soon as the constraints are fulfilled
satisfactorily.

It is known (see e.g. [1]) that in nonlinear constrained
optimization problems, a sequence xkð Þk2N of minimizing
solutions, obtained by Augmented Lagrange iterations,
converges to a value �x which, together with the limit �k of
the corresponding sequence of multipliers kkð Þk2N, solves
the optimization problem, where the constraints have been
enforced by Lagrange Multipliers.

In Sect. 3.1.3, we show a corresponding result for a
certain class of discrete Hamiltonian systems.

3
Discrete Hamiltonian systems
In order not to lose the conservation properties under
discretization, Gonzalez [6] introduced the concept of a
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discrete derivative leading to implicit second-order
conserving time-stepping schemes for general Hamilto-
nian systems. It is intimately correlated to the more
general view of Hamilton’s equations described in Re-
mark 2.2. The main ideas of this concept shall be out-
lined here before it is applied to constrained
Hamiltonian systems.

Let ðP;xÞ be a symplectic space (where P is open in an
2n-dimensional Euclidian space), serving as phase space
for the Hamiltonian H : P! R. A discrete approximation
of Hamilton’s differential equations (5) is given by

znþ1 � zn ¼ hXHðzn; znþ1Þ ð17Þ
where h > 0 is the time step and XH : P! TP is the
discrete Hamiltonian vector field, defined via the discrete
analogue of (4)

xb
z

nþ1
2

ðXHðzn; znþ1ÞÞ ¼ DHðzn; znþ1Þ ; ð18Þ

where the discrete derivative (defined below) of the
Hamiltonian is used on the right hand side.

Definition 3.1 The discrete derivative Df : P�P! T�P
for a smooth function f : P! R is defined by the
following properties:

(i) Directionality: Df ðx; yÞ � ðy � xÞ ¼ f ðyÞ � f ðxÞ for all
x; y 2 P.

(ii) Consistency: Df ðx; yÞ ¼ Df wð Þ þ O
��y � x

��� �
for all

x; y 2 P with
��y � x

�� sufficiently small.

Here w ¼ 1
2 xþ yð Þ and

�� � �� denotes the standard
Euclidian norm in R2n.

To interpret (i) correctly, note that for all x 2 P the
tangent space TxP as well as the cotangent space T�xP at x
to the linear space P can be identified with P itself, as it is
usual for linear spaces.

A general example of a discrete derivative is given by

Df ðx; yÞ ¼ Df wð Þ

þ f ðyÞ � f ðxÞ � Df ðwÞ � y � xð Þ��y � x
��2 y � xð Þ :

ð19Þ
It is a second-order approximation to the exact derivative
at the midpoint.

With this construction, the Hamiltonian H is conserved
along a solution sequence znð Þn2N of (17) in the sense that
Hðznþ1Þ � HðznÞ ¼ 0 for all n 2 N.

3.1
Constrained discrete Hamiltonian systems
As descibed at the beginning of Sect. 2.1, the treatment of
m holonomic constraints g : Q! Rm for a Hamiltonian
system can be covered by the Hamiltonian
Hðq; pÞ ¼ TðpÞ þ UðqÞ þ PðgðqÞÞ ¼ ~TðzÞ þ ~UðzÞ þ ~PðzÞ,
assuming that the conditions (2), (7–10) hold. The func-
tion P will be defined according to the method used to
treat the constraints.

Denoting the midpoint by znþ1
2
¼ 1

2 znþ1 þ znð Þ and
using the example (19) a discrete derivative for H is

DH zn;znþ1ð Þ¼D ~Tðznþ1
2
ÞþD ~Uðznþ1

2
ÞþD ~Pðznþ1

2
Þ

þ
~Tðznþ1Þ� ~TðznÞ�hD ~Tðznþ1

2
Þ;znþ1� zni��znþ1� zn

��2

 

þ
~Uðznþ1Þ� ~UðznÞ�hD ~Uðznþ1

2
Þ;znþ1�zni��znþ1� zn

��2

þ
~Pðznþ1Þ� ~PðznÞ�hD ~Pðznþ1

2
Þ;znþ1� zni��znþ1� zn

��2

!
ðznþ1�znÞ

¼D ~Tðznþ1
2
ÞþD ~Uðznþ1

2
ÞþD ~Pðznþ1

2
Þ

þ S ~Tðzn;znþ1ÞþS ~Uðzn;znþ1ÞþS ~Pðzn;znþ1Þ
� �
ðznþ1� znÞ ð20Þ

where h:; :i denotes the standard inner product in R2n and
the scalars S ~Tðzn; znþ1Þ; S ~Uðzn; znþ1Þ; S ~Pðzn; znþ1Þ belonging
to the scalar valued terms in the functions ~T; ~U; ~P
respectively have been introduced in an obvious way.

Using the canonical symplectic structure for the defi-
nition of the Hamiltonian vector field (18) and inserting
this in the discrete equations of motion (17) we arrive at
the discrete constrained Hamiltonian system
qnþ1 � qn

h
¼ Dp

~Tðznþ1
2
Þ

þ S ~Tðzn; znþ1Þ þ S ~Uðzn; znþ1Þ
�

þS ~Pðzn; znþ1ÞÞðpnþ1 � pnÞ
pnþ1 � pn

h
¼ �Dq

~Uðznþ1
2
Þ � Dq

~Pðznþ1
2
Þ

� S ~Tðzn; znþ1Þ þ S ~Uðzn; znþ1Þ
�

þS ~Pðzn; znþ1ÞÞðqnþ1 � qnÞ :

ð21Þ

3.1.1
Lagrange Multiplier Method
As described in Sect. 2.1.1, the use of Lagrange Multipliers
to enforce m constraints enlarges the number of equations
as well as the number of unknowns by m. The function
PLag is the inner product of k 2 Rm and gðqÞ:
~PLagðzÞ ¼ PLagð~gðzÞÞ ¼ h~gðzÞ; ki : ð22Þ
Consequently, the discrete Hamiltonian system takes the
form

qnþ1� qn

h
¼ Dp

~Tðznþ1
2
Þ þ
 

S ~Tðzn;znþ1Þ

þ S ~Uðzn; znþ1Þ

�
hDT~gðznþ1

2
Þknþ1;znþ1� zni��znþ1� zn

��2

!
ðpnþ1� pnÞ

pnþ1� pn

h
¼�Dq

~Uðznþ1
2
Þ �DT~gðznþ1

2
Þknþ1

�
 

S ~Tðzn;znþ1Þ þ S ~Uðzn;znþ1Þ

�
hDT~gðznþ1

2
Þknþ1;znþ1� zni��znþ1� zn

��2

!
ðqnþ1� qnÞ

~gðznþ1Þ ¼ 0 :

ð23Þ
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Analogous to the continuous case, under the assumptions
taken, for given zn with ~gðznÞ ¼ 0, (23) has a unique
solution ðznþ1; knþ1Þ. Obviously, znþ1 satisfies the position
constraints such that znþ1 2 C.

Solving the nonlinear system of equations (23) by
Newton–Raphson iteration involves a tangent matrix of
rather poor structure (neither symmetric nor banded).
Furthermore for decreasing time steps h, the system be-
comes more and more ill-conditioned. Following the ideas
in [11], it can be easily calculated that the condition
number of the Jacobian of the residual (23) is of the order
Oð 1

h2Þ. Obviously, (23) yields a solution that fulfills the
constraints exactly (up to a numerical tolerance) and
provides information about the constraint forces in the
mechanical system.

3.1.2
Penalty Method
Setting up (21) for the Hamiltonian
Hðq; pÞ ¼ ~TðzÞ þ ~UðzÞ þ l~RðzÞ with l 2 Rþ and
~RðzÞ ¼ Rð~gðzÞÞ, leads to the discrete Hamiltonian system

For all l 2 Rþ (24) has a unique solution znþ1 for given
zn with ~gðznÞ ¼ 0.

The following proposition may be viewed as the discrete
counterpart of the result by Rubin and Ungar [13] asso-
ciated with the energy-conserving scheme under investi-
gation.

Proposition 3.2 Let zn 2 C be consistent coordinates at
time tn, n 2 N arbitrary. Let lsð Þs2N� Rþ be an arbitrary
sequence with ls !1 as s!1 and denote the solution
of the system (24) corresponding to ls by zs

nþ1. Then the
sequence of solutions zs

nþ1

� �
s2N of (24) converges to the

solution znþ1 of the Lagrange Multiplier Method (23) as
s!1.

Proof:
Let n 2 N and s 2 N be arbitrary. Since we integrate the
system of equations by an energy-conserving method and
we start with a consistent value, i.e. ~gðznÞ ¼ 0, we know
that the correct energy of the mechanical system
~TðznÞ þ ~UðznÞ ¼ HðznÞ ¼ H0 is conserved along the
solution of (24):

~Tðzs
nþ1Þ þ ~Uðzs

nþ1Þ þ ls
~Rðzs

nþ1Þ ¼ H0 : ð25Þ
Since ~T and ~R are non-negative and ~U is bounded from
below, it follows that there exists Js

nþ1 2 Rþ with

ls
~Rðzs

nþ1Þ � Js
nþ1 s 2 N arbitrary

) 9Jnþ1 2 Rþ with lim
s!1

ls
~Rðzs

nþ1Þ � Jnþ1

)ls!1 lim
s!1

~Rðzs
nþ1Þ ¼ 0

)ð8Þ lim
s!1

~gðzs
nþ1Þ ¼ 0

Let �znþ1 be the limit point of zs
nþ1

� �
s2N, then it follows by

the continuity of the constraint functions that ~gð�znþ1Þ ¼
gð�qnþ1Þ ¼ 0, which means that the constraints are fulfilled
by �znþ1 ¼ lims!1 zs

nþ1.
Together with (8) this implies

~PPenð�znþ1Þ ¼ lims!1 lsRð~gðzs
nþ1ÞÞ ¼ 0. In particular the

growth of ~PPen is bounded, i.e. there is a constant
Knþ1 2 Rþ with

��D ~PPenð�znþ1Þ
�� � Knþ1.

By the boundedness of H (that implies the boundedness
of ~T; ~U and ~P via (25)), we can conclude that for all n 2 N
the solutions zs

nþ1

� �
s2N as well as the limit point �znþ1 lie in

a bounded region in P. Consequently, D ~PPenð�znþ1
2
Þ is

bounded for �znþ1
2
¼ 1

2 ð�znþ1 þ znÞ.

D ~PPenð�znþ1
2
Þ ¼ lim

s!1
lsD

T~gðzs
nþ1

2
ÞD~gRð~gðzs

nþ1
2
ÞÞ

¼ DT~gð�znþ1
2
Þ lim

s!1
lsD~gRð~gðzs

nþ1
2
ÞÞ : ð26Þ

Since 0 is a regular value of the constraints, DT~g has full
rank in zn and �znþ1. So, if the time step is small enough,
DT~gð�znþ1

2
Þ : T~gð�z

nþ1
2
ÞR

m ! T�z
nþ1

2

P has also full rank, partic-
ularly it is injective. Hence there exist hs

nþ1

� �
s2N2 Rm and

�hnþ1 2 Rm with

�hnþ1 ¼ lim
s!1

hs
nþ1 ¼ lim

s!1
lsD~gRð~gðzs

nþ1
2
ÞÞ

and
���hnþ1

�� <1 : ð27Þ
With this preliminaries and abbreviations, for zn 2 P with
~gðznÞ ¼ 0 given, �znþ1 fulfills the equations

qnþ1 � qn

h
¼ Dp

~Tðznþ1
2
Þ þ ðpnþ1 � pnÞ S ~Tðzn; znþ1Þ þ S ~Uðzn; znþ1Þ

�

þ
lRð~gðznþ1ÞÞ � lRð~gðznÞÞ � hlDT~gðznþ1

2
ÞD~gRð~gðznþ1

2
ÞÞ; znþ1 � zni��znþ1 � zn

��2

!

pnþ1 � pn

h
¼ �Dq

~Uðznþ1
2
Þ � lDT~gðznþ1

2
ÞD~gRð~gðznþ1

2
ÞÞ � ðqnþ1 � qnÞ S ~Tðzn; znþ1Þ þ S ~Uðzn; znþ1Þ

�

þ
lRð~gðznþ1ÞÞ � lRð~gðznÞÞ � hlDT~gðznþ1

2
ÞD~gRð~gðznþ1

2
ÞÞ; znþ1 � zni��znþ1 � zn

��2

!
ð24Þ
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�qnþ1 � qn

h
¼ Dp

~Tð�znþ1
2
Þ þ S ~Tðzn;�znþ1Þ þ S ~Uðzn;�znþ1Þ

�

�
hDT~gð�znþ1

2
Þ�hnþ1; znþ1 � zni���znþ1 � zn

��2

!
ð�pnþ1 � pnÞ

�pnþ1 � pn

h
¼ �Dq

~Uð�znþ1
2
Þ � DT~gð�znþ1

2
Þ�hnþ1

� S ~Tðzn;�znþ1Þ þ S ~Uðzn;�znþ1Þ
�

�
hDT~gð�znþ1

2
Þ�hnþ1;�znþ1 � zni���znþ1 � zn

��2

!
ð�qnþ1 � qnÞ

~gð�znþ1Þ ¼ 0 : ð28Þ
This system equals exactly (23). Because of the

uniqueness of the solution ðznþ1; knþ1Þ of (23) we have
ð�znþ1; �hnþ1Þ ¼ ðznþ1; knþ1Þ, or loosely speaking, at each
time step the solution sequence of the Penalty Method

zs
nþ1

� �
s2N converges to the solution znþ1 of the Lagrange

Multiplier Method. Furthermore, the product of the
penalty parameter and the derivative of R at the point
zs

nþ1
2

converges to the corresponding Lagrange Multiplier
knþ1.

Remark 3.3 This proposition holds for the class of en-
ergy-conserving integrators using the discrete derivative
(3.1). The main argument in the proof is the conserva-
tion of energy along the solution of the discrete system.
The statement could have been proved directly for the
subclass of energy-momentum schemes, but here the
more general (and notationally simpler) case has been
preferred.

Remark 3.4 In [13] and [5], the special penalty function
PðgðqðtÞÞÞ ¼ l

��gðqðtÞÞ
��2

is considered in the continuous

(1-dimensional) case and only the weak convergence of
lsgðqsðtÞÞ to the correct Lagrange Multiplier is discussed.
Since the discrete system is finite-dimensional, weak and
strong convergence are equivalent for
�hnþ1 ¼ lim

s!1
lsD~gRð~gðzs

nþ1
2
ÞÞ.

The condition of the Jacobian of (24) is of the order
Oðl2h2Þ. In contrast to (23), here the condition improves
when the time step size decreases, provided that l is fixed.

3.1.3
Augmented Lagrange Method
As explained in Sect. 2.1.3, the function P, that covers the
enforcement of the constraints in the Augmented Lagrange
Method is a combination of those used in the two previous
sections.

PAugðgðqÞÞ ¼ PLagðgðqÞÞ þ PPenðgðqÞÞ
¼ hkk; gðqÞi þ lRðgðqÞÞ

where l 2 Rþ is fixed and kk is updated during an extra
iteration according to the formula

k0 ¼ 0

kkþ1 ¼ kk þ lDgRðgðqkÞÞ :
For zn with ~gðznÞ ¼ 0 and kk

nþ1 given, we consider the
discrete Hamiltonian system

qk
nþ1�qn

h
¼Dp

~Tðzk
nþ1

2
Þþ S ~Tðzn;z

k
nþ1Þ

�

þS ~Uðzn;z
k
nþ1ÞþS ~PAug

ðzn;z
k
nþ1Þ

�
ðpk

nþ1�pnÞ

pk
nþ1�pn

h
¼�Dq

~Uðzk
nþ1

2
Þ

�DT~gðzk
nþ1

2
Þ kk

nþ1þlD~gRð~gðzk
nþ1ÞÞ

� �
� S ~Tðzn;z

k
nþ1ÞþS ~Uðzn;z

k
nþ1Þ

�
þS ~PAug

ðzn;z
k
nþ1Þ

�
ðqk

nþ1�qnÞ

ð29Þ
with

S ~PAug
ðzn; zk

nþ1Þ ¼
��zk

nþ1 � zn

���2 hkk
nþ1; ~gðzk

nþ1Þi
�

þ l~Rðzk
nþ1Þ

�hDT~gðzk
nþ1

2
Þ kk

nþ1 þ lD~gRð~gðzk
nþ1ÞÞ

� �
; zk

nþ1 � zni
�
ð30Þ

where the example (19) of a discrete derivative has been
used for ~T; ~U; ~PLag , while it has been slightly modified for
~PPen:

This is done for technical reasons. Using D̂ allows to
show the fulfillment of the constraints at �znþ1,
whereas using D would lead to the fulfillment of the
constraints at the midpoint �znþ1

2
. D̂ is a discrete deriv-

ative as well, so (29) is a consistent, energy-conserving
system.

Proposition 3.5 Let zn 2 C be consistent coordinates at
time tn, n 2 N arbitrary. Let l 2 Rþ be arbitrary and
denote the solution of the system (29) corresponding to
kk

nþ1 by zk
nþ1. Then the sequence of solutions zk

nþ1

� �
k2N of

(29) converges to the solution znþ1 of the Lagrange
Multiplier Method (23) as k!1. Furthermore the
sequence of Lagrange Multipliers kk

nþ1

� �
k2N converges to

the correct Lagrange Multiplier knþ1 that solves (23)
together with znþ1.

D̂~PPenðzn; zk
nþ1Þ ¼ DT~gðzk

nþ1
2
ÞD~gPPenð~gðzk

nþ1ÞÞ

þ
~PPenðzk

nþ1Þ � ~PPenðznÞ � hDT~gðzk
nþ1

2
ÞD~gPPenð~gðzk

nþ1ÞÞ; zk
nþ1 � zni��zk

nþ1 � zn

��2 ðzk
nþ1 � znÞ ð31Þ
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Proof:
Let n 2 N and k 2 N be arbitrary. Since the energy is
conserved along the solutions zk

nþ1 of (29) and ~gðznÞ ¼ 0,
we have

Hðzk
nþ1Þ ¼ ~Tðzk

nþ1Þ þ ~Uðzk
nþ1Þ

þ hkk
nþ1; ~gðzk

nþ1Þi þ l~Rðzk
nþ1Þ ¼ H0 : ð32Þ

With the assumptions (2), (8), (13) it follows that there is
Kk

nþ1 2 Rþ such that hkk
nþ1; ~gðzk

nþ1Þi � Kk
nþ1. Let

�znþ1 ¼ limk!1 zk
nþ1 be the limit point of the solutions of

(29) with the corresponding kk
nþ1 and let

�knþ1 ¼ lim
k!1

kk
nþ1 ¼ k0

nþ1 þ
X1
k¼1

lD~gRð~gðzk
nþ1ÞÞ : ð33Þ

Since k is arbitrary, there is Knþ1 2 Rþ such that
h�knþ1; ~gð�znþ1Þi � Knþ1, which comprehends two cases:

� �knþ1 ¼ 1) ~gð�znþ1Þ ¼ lim
k!1

~gð�zk
nþ1Þ ¼ 0

� �knþ1 <1) lim
k!1

D~gRð~gðzk
nþ1ÞÞ ¼ 0

)
R convex

~gð�znþ1Þ ¼ 0

In any case this states that the constraints are fulfilled in
the limit point �znþ1. The same arguments as in the proof of
Proposition 3.2 imply (i) that the solutions zk

nþ1

� �
k2N as

well as the limit point �znþ1 lie in a bounded region in P
and (ii) the injectivity of DT~gð�znþ1

2
Þ. A look at the system

(29) then excludes the first case.
Summing up we find that ð�znþ1; �knþ1Þ fulfill the equations

�qnþ1 � qn

h
¼ Dp

~Tð�znþ1
2
Þ þ
 

S ~Tðzn;�znþ1Þ þ S ~Uðzn;�znþ1Þ

�
hDT~gð�znþ1

2
Þ�knþ1; znþ1 � zni���znþ1 � zn

��2

!
ð�pnþ1 � pnÞ

�pnþ1 � pn

h
¼ �Dq

~Uð�znþ1
2
Þ �DT~gð�znþ1

2
Þ�knþ1

�
 

S ~Tðzn;�znþ1Þ þ S ~Uðzn;�znþ1Þ

�
hDT~gð�znþ1

2
Þ�knþ1;�znþ1 � zni���znþ1 � zn

��2

!
ð�qnþ1 � qnÞ

~gð�znþ1Þ ¼ 0 : ð34Þ
This system equals exactly (23). Because of the uniqueness
of the solution ðznþ1; knþ1Þ of (23) we have
ð�znþ1; �knþ1Þ ¼ ðznþ1; knþ1Þ, i.e. the sequence

zk
nþ1; k

k
nþ1

� �
k2N of solutions of the Augmented Lagrange

Method together with the corresponding multipliers con-
verges to the solution of the Lagrange Multiplier Method at
each time step.

Remark 3.6 (Equal to Remark 3.3). This proposition
holds for the class of energy-conserving integrators using
the discrete derivative (3.1). The main argument in the

proof is the conservation of energy along the solution of
the discrete system. The statement could have been proved
directly for the subclass of energy-momentum schemes,
but here the more general (and notationally simpler) case
has been preferred.

The condition of the iteration matrix in the Newton–
Raphson iteration for (29) is also of the order Oðl2h2Þ, but
the numerical examples show, that for the same penalty
parameter and time step it is slightly worse than in the
Penalty Method, since the influence of the penalty
parameter is a little stronger. The advantage of the Aug-
mented Lagrange Method is that the fulfillment of the
constraints is improved during the extra iteration while l
is kept constant, so if the time step is small enough to
balance the penalty parameter, the Newton-Raphson iter-
ation runs with a very good-conditioned tangent matrix.

4
Numerical examples
Although the use of a special equivariant discrete deriva-
tive (see [6]) complicates the setup of the general discrete
constrained Hamiltonian system (21), it leads to less
complicated systems for the relatively simple examples
treated in the following. Besides that the solution is more
realistic due to the additional conservation of momentum
maps, energy-momentum schemes exhibit improved
numerical behaviour. All the numerical results presented
here are obtained by employing energy-momentum
schemes. For the double spherical pendulum, the relevant
equations are given explicitely.

4.1
Double spherical pendulum
In the first numerical example we consider the motion of
the double spherical pendulum in Fig. 1. It is suspended at
the origin of the 3-dimensional cartesian coordinate sys-
tem. Massless rigid rods of lengths l1 and l2 connect the
masses m1 and m2 to each other and to the origin,
respectively. The gravitational acceleration with absolute
value g points in the negative e2-direction. The kinetic
energy T and the potential energy U are given by the
following expressions:

TðpÞ ¼ 1

2
pTM�1p; UðqÞ ¼ g

e2

e2

� �T

Mq ; ð35Þ

Fig. 1. Double spherical pendulum
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with q ¼ q1

q2

� �
; p ¼ p1

p2

� �
2 R6 and the 6� 6 diagonal

mass matrix

M ¼ m1I3 0
0 m2I3

� �
: ð36Þ

The constraints are related to the constancy of the lengths
of the rigid rods:

g1ðqÞ ¼
1

2
q1 � q1 � l2

1

� �
¼ 0

g2ðqÞ ¼
1

2
ðq2 � q1Þ � ðq2 � q1Þ � l2

2

� �
¼ 0

ð37Þ

The constraints restrict possible configurations to the
manifold S2

l1
� S2

l2
consisting of two spheres, one about the

origin with radius l1 and one about the first mass with
radius l2.

In the following the motion of the pendulum with unit
masses and rods of unit length is calculated. The pendu-
lum starts at a horizontal initial position with zero initial
velocity. The absolute value of the gravitational accelera-
tion is g ¼ 9:81.

Remark 4.1 All schemes investigated conserve the total
energy and the angular momentum with respect to the
gravitational axis up to numerical errors. This is shown
exemplarily in Fig. 2.

4.1.1
Lagrange Multiplier Method
For the Lagrange Multiplier Method, the discrete energy-
momentum system (being a special case of (23)) for the
motion of the double spherical pendulum takes the form

qnþ1 � qn

h
¼ M�1pnþ1

2

pnþ1 � pn

h
¼ Mg

e2

e2

� �
�

q1
nþ1

2
�q2

nþ1
2
þ q1

nþ1
2

0 q2
nþ1

2
� q1

nþ1
2

 !
knþ1

gðqnþ1Þ ¼ 0 :

ð38Þ

This system is in accordance with the example in [7] and
with the mG(1) method in [3]. According to ð38Þ3, for the
Lagrange Multiplier Method the constraints are fulfilled
numerically exact (up to the order O 10�16ð Þ). This scheme
is second order accurate, one can see in Fig. 3 that the
calculated solutions converge to a reference solution,
which has been calculated with a time step h ¼ 10�5,
quadratically as the time step decreases.

The dependence of the condition number of the
iteration matrix on the time step is depicted in Fig. 4.

4.1.2
Penalty Method
For the double spherical pendulum the Penalty Method
can be interpreted as a replacement of the rods by springs
of stiffness l. The discrete energy-momentum-conserving
equations of motion with PPenðgðqÞÞ ¼ l

��gðqÞ
��2

are given
by

Fig. 2. Algorithmic evolution of kinetic energy, Hamiltonian and
angular momentum, h ¼ 10�3

Fig. 3. Relative position error for the Lagrange Multiplier
Method, reference solution calculated with h ¼ 10�5

Fig. 4. Proportionality of the condition number of the iteration
matrix to 1=h2
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qnþ1 � qn

h
¼ M�1pnþ1

2

pnþ1 � pn

h
¼ Mg

e2

e2

� �

� 2l
ðg1ðqnþ1ÞÞ

2 � ðg1ðqnÞÞ
2

��q1
nþ1

��2 �
��q1

n

��2

q1
nþ1

2

0

 !

� 2l
ðg2ðqnþ1ÞÞ

2 � ðg2ðqnÞÞ
2

��q2
nþ1 � q1

nþ1

��2 �
��q2

n � q1
n

��2

�q2
nþ1

2
þ q1

nþ1
2

q2
nþ1

2
� q1

nþ1
2

 !

ð39Þ
The extension of the springs with stiffness l ¼ 5 can be
seen clearly in Fig. 5, Figs. 6 and 7 show the statements of
Proposition 3.2. The fulfillment of the constraints im-
proves and the solution of the penalty system for the
double spherical pendulum (39) converges to that of the
corresponding Lagrange Multiplier system (38) as the
penalty parameter increases.

4.1.3
Augmented Lagrange Method
Calculating the motion with the Augmented Lagrange
Method means to solve the system

qk
nþ1� qn

h
¼M�1pk

nþ1
2

pk
nþ1� pn

h
¼Mg

e2

e2

 !
�
�
k1;k

nþ1

þ2l
ðg1ðqk

nþ1ÞÞ
2 � ðg1ðqnÞÞ

2

��qk;1
nþ1

��2 �
��q1

n

��2

#
q1;k

nþ1
2

0

 !

� k2;k
nþ1 þ 2l

ðg2ðqk
nþ1ÞÞ

2 � ðg2ðqnÞÞ
2

��q2;k
nþ1 � q1;k

nþ1

��2 �
��q2

n � q1
n

��2

" #

�
�q2;k

nþ1
2

þ q1;k
nþ1

2

q2;k
nþ1

2

� q1;k
nþ1

2

0
@

1
A

kkþ1
nþ1 ¼ kk

nþ1 þ l2gðqk
nþ1Þ ð40Þ

iteratively until the desired accuracy has been reached for
the constraint fulfillment. The greater the penalty param-
eter is, the fewer iterations are required to reach this
accuracy, since for high penalty parameters, the con-
straints are already fulfilled to some degree in the first
iteration. We depict the results for the penalty parameter
l ¼ 107 and time step h ¼ 10�3 to corroborate the state-
ments of Proposition 3.5.

Within two AL-iterations the error in the fulfillment of
the constraints drops under the required tolerance of
10�10, see Fig. 8. Furthermore, the table shows the con-
vergence of the multipliers to the exact Lagrangian Mul-
tiplier and the convergence of the calculated position to
that of the corresponding Lagrange Multiplier system.

Fig. 5. Motion of the double spherical pendulum, l ¼ 5

Fig. 6. Influence of l on constraint fulfillment, h ¼ 10�3

Fig. 7. Relative error of the position calculated by the Penalty
Method with increasing l, h ¼ 10�3. Reference solution calcu-
lated by the Lagrange Multiplier Method, h ¼ 10�3
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4.2
Rigid body motion
This example deals with a heavy symmetrical top in Fig. 9.
One point on the symmetry axis is fixed at the origin and
the gravitational force acts in the direction of �e3. The
equations of motion for the rigid body are formulated as a
Hamiltonian system subject to holonomic constraints. The
configuration variables are the position of the center of
mass uðtÞ 2 R3 and a triad fd1; d2; d3g of directors
diðtÞ 2 R3. See [2] for a detailed exposition of this for-
mulation, the specific parameters and the initial conditions
for this example. For simplicity we assume that the
directions of the principal axes of inertia of the top coin-
cide with those of the director triad. The assumption of
rigidity gives rise to m ¼ 6 orthonormality constraints:

0 ¼ g d1; d2; d3ð Þ ¼

1
2 ðd1 � d1 � 1Þ
1
2 ðd2 � d2 � 1Þ
1
2 ðd3 � d3 � 1Þ

d1 � d2

d1 � d3

d2 � d3

0
BBBBBB@

1
CCCCCCA

ð41Þ

4.2.1
Penalty Method
The motion of the center of gravity, calculated with
l ¼ 107; h ¼ 10�3 with the Penalty Method is depicted in
Fig. 10. It coincides with the results documented in [2],
which have been calculated using the Lagrange Multiplier
Method.

The Penalty Method results show qualitatively the
same behaviour as for the double spherical pendulum

(particularly they affirm the statements of Proposition
3.2), but they are of minor accuracy. Comparing Fig. 11
to Fig. 6 and Fig. 12 to Fig. 7 it turns out, that the
fulfillment of the rigid body constraints as well as the
relative position error are about three orders of mag-
nitude worse than for the double spherical pendulum.
This is one drawback of the Penalty Method, the more
involved the problems get, the greater are the penalty
parameters required to enforce the constraints.

4.2.2
Augmented Lagrange Method
Also the results of the Augmented Lagrange Method for
the motion of the heavy symmetrical top corroborate the
statements of Proposition 3.5. For comparison to the
double spherical pendulum, we depict the results for
l ¼ 107 and h ¼ 10�3. For a wide range of time steps, the
algorithm for the more complicated problem requires six
Augmented Lagrange iterations to reach the accuracy of
10�10 for the fulfillment of the position constraints, see

Fig. 8. Convergence of the solution of the Augmented Lagrange
Method, l ¼ 107; h ¼ 10�3, to the solution of the Lagrange
Multiplier Method, h ¼ 10�3

Fig. 9. Heavy symmetrical top with director triad in the center
of gravity

Fig. 10. Motion of the center of mass, l ¼ 107; h ¼ 10�3

Fig. 11. Influence of l on constraint fulfillment, h ¼ 10�3
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Fig. 13. The convergence of the multipliers to the exact
Lagrangian Multiplier and the convergence of the position
to that of the corresponding Lagrange Multiplier system
can be seen in Fig. 14 and Fig. 15, respectively.

5
Comparison and conclusions
Figure 16 shows some aspects for comparison of the three
methods. The number of unknowns using the Lagrange
Multiplier Method is generally higher than for the other
two methods. For a physical system in n-dimensional
configuration space subject to m holonomic constraints,
the Lagrange Multiplier systems consists of 2nþm equa-
tions whereas the dimension of the Penalty system and the
Augmented Lagrange system is 2n.

The advantage of the Lagrange Multiplier Method is
certainly that the constraints are fulfilled numerical

exactly. For the Penalty Method, accuracy can hardly be
predicted, it is strongly problem dependent as could be
seen in the examples. For the Augmented Lagrange
Method, any reasonable accuracy can be reached but this
must be paid with a certain number of extra iterations,
which is again dependent on the complexity of the
problem under consideration.

In the limit for decreasing time steps, the condition
number of the iteration matrix of the Lagrange Multiplier

Fig. 12. Relative error of the position calculated by the Penalty
Method. Reference solution calculated by the Lagrange Multiplier
Method, h ¼ 10�3

Fig. 13. Improvement of the fulfillment of the constraints during
AL-iterations

Fig. 14. Error of the multipliers calculated with the Augmented
Lagrange Method, with respect to the exact Lagrangian Multiplier,
h ¼ 10�3

Fig. 15. Error of the position calculated with the Augmented
Lagrange Method, with respect to the position calculated by the
Lagrangian Multiplier Method, h ¼ 10�3

unknowns constraints condition

Lagrange Multipliers 2nþm num. zero O 1
h2

� �
Penalty 2n not known O l2h2ð Þ
Augmented Lagrange 2n num. tol O l2h2ð Þ

Fig. 16. Theoretical aspects of the methods
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system is certainly worse than that of the other two sys-
tems, but since the choice of a penalty parameter and a
time step for a concrete problem depends strongly on ones
intention and on the problem itself, the condition numbers
can hardly be compared theoretically.

Concerning the numerical costs our tests indicated that
the Penalty Method can compete with the Lagrange
Multiplier Method whereas the Augmented Lagrange
Method, in most cases required considerably more com-
putational time.
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