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SUMMARY

In the present work, rigid bodies and multibody systems are regarded as constrained mechanical
systems at the outset. The constraints may be divided into two classes: (i) internal constraints which
are intimately connected with the assumption of rigidity of the bodies, and (ii) external constraints
related to the presence of joints in a multibody framework. Concerning external constraints lower
kinematic pairs such as revolute and prismatic pairs are treated in detail. Both internal and external
constraints are dealt with on an equal footing. The present approach thus circumvents the use of
rotational variables throughout the whole time discretization. After the discretization has been completed
a size-reduction of the discrete system is performed by eliminating the constraint forces. In the wake
of the size-reduction potential conditioning problems are eliminated. The newly proposed methodology
facilitates the design of energy–momentum methods for multibody dynamics. The numerical examples
deal with a gyro top, cylindrical and planar pairs and a six-body linkage. Copyright � 2006 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In the present work, we apply the discrete null space method developed by the first author [1]
to rigid bodies and multibody systems. The precursor work [1] will be subsequently referred
to as Part I.

The present formulation of multibody dynamics relies on redundant coordinates subject to
holonomic constraints. In particular, as in Part I, the equations of motion assume the form of
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differential-algebraic equations (DAEs) with constant mass matrix. In this connection the most
striking feature of the underlying rigid body description is the use of the nine components of
the rotation matrix as redundant coordinates. At first glance this type of rigid body description
seems to be quite awkward due to the large number of unknowns. For example, to describe
purely rotational motion of a rigid body, nine coordinates together with six Lagrange multipliers
for the enforcement of the constraints of rigidity are required. On the other hand, there are a
number of reasons why the constrained formulation of rigid bodies becomes more and more
popular, see, for example, the books by José and Saletan [2] and Leimkuhler and Reich [3].

The constrained formulation of rigid bodies is especially beneficial to the description of multi-
body systems. This is due to the fact that a general description of multibody systems has to
take into account constraints anyway. In a multibody framework we may distinguish between
internal constraints related to the rigidity of the individual bodies and external constraints
associated with interconnecting joints. The underlying DAEs thus provide a uniform frame-
work for both types of constraints and are thus well-suited for the description of multibody
systems.

The constrained formulation of rigid bodies is also well-suited for structure preserving
numerical time integration. See, for example, the symplectic scheme proposed by Reich [4]
and the energy–momentum scheme proposed by Betsch and Steinmann [5]. Due to the uniform
DAE formulation these time-stepping schemes can be directly extended to multibody dynamics.
Indeed the design of energy–momentum methods for multibody dynamics within the framework
of the discrete null space method is the main goal of the present work.

The more common description of rigid body dynamics by means of the Newton–Euler
equations (see, for example, Reference [6]) may also serve as the starting point for the time
discretization. In fact, a lot of work has been devoted to the design of structure preserving
integrators for rigid bodies based on the classical Newton–Euler equations. In this connection,
we refer to the papers by Lewis and Simo [7], Géradin and Rixen [8] and Krysl [9]. Conserving
integrators for multibody dynamics have been developed in the framework of the Newton–
Euler equations by Chen [10] and Lens et al. [11]. In a similar context the energy consistent
discretization of joint constraints is addressed in References [12–14].

The present work aims at a systematic treatment of lower kinematic pairs within the dis-
crete null space method developed in Part I. We make use of the aforementioned redundant
coordinates for the description of the configuration of each individual rigid body. Consequently,
the motion of rigid bodies, kinematic pairs as well as multibody systems is governed by a
uniform set of DAEs with constant mass matrix. Similar to the internal constraints, the external
constraints associated with the lower kinematic pairs considered herein are at most quadratic.
These advantageous features facilitate a straight-forward energy–momentum conserving time
integration. However, there are two major drawbacks of this approach: (i) an excessive number
of unknowns (redundant coordinates plus Lagrange multipliers), and (ii) potential conditioning
problems (cf. Part I). Both drawbacks can be completely eliminated by applying the discrete
null space method. To achieve an efficient implementation of the discrete null space method
the design of viable explicit representations of the discrete null space matrices is of primary
importance. Accordingly, the design of null space matrices and its discrete counterparts for
lower kinematic pairs is one of the main goals of the present work. To this end, we propose a
multiplicative decomposition of the null space matrices which reflects the presence of internal
and external constraints. In this connection, the external constraints are accounted for by incor-
porating the notion of a natural orthogonal complement introduced by Angeles and Lee [15].

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 67:499–552



THE DISCRETE NULL SPACE METHOD 501

This paper is organized as follows: Section 2 contains a short summary of the DAEs which
uniformly govern the motion of the finite-dimensional mechanical systems considered herein.
In addition to that, the discretization of the DAEs by means of the discrete null space method
is outlined. Section 3 deals with the dynamics of a single rigid body. In this connection, both
the DAE description and the application of the discrete null space method are treated. The
extension to multibody dynamics is considered in Section 4. In particular, a systematic design of
discrete null space matrices pertaining to lower kinematic pairs is proposed. Section 5 contains
numerical examples dealing with a gyro top, cylindrical and planar pairs and a six-body linkage.
Finally, conclusions are drawn in Section 6.

2. OUTLINE OF THE PRESENT APPROACH

This section provides an outline of the main ingredients of the present approach to the
discretization of multibody dynamics. It essentially consists of the specific formulation of
finite-dimensional constrained mechanical systems and the corresponding energy-consistent time
discretization.

2.1. Constrained mechanical systems

We consider constrained mechanical systems which are governed by the following set of DAEs:

q̇ − v = 0

Mv̇ + ∇V (q) + GT� = 0

�(q) = 0

(1)

where q(t) ∈ Rn specifies the configuration of the mechanical system at time t . A superposed
dot denotes differentiation with respect to time, v ∈ Rn is the velocity vector and M ∈ Rn×n

is a constant mass matrix, so that the kinetic energy can be written as

T (v) = 1
2 vTMv (2)

Moreover, V (q) ∈ R is a potential energy function, �(q) ∈ Rm is a vector of geometric constraint
functions, G = D�(q) ∈ Rm×n is the constraint Jacobian and � ∈ Rm is a vector of multipliers
which specify the relative magnitudes of the constraint forces. In the above description it is
tacitly assumed that the m constraints at hand are independent.

Due to the presence of holonomic (or geometric) constraints (1)3, the configuration manifold
of the system is given by

Q = {q(t) ∈ Rn | �(q) = 0} (3)

The geometric constraints give rise to kinematic (or hidden) constraints which follow from the
consistency condition d�/dt = 0. Accordingly, the kinematic constraints assume the form

Gv = 0 (4)
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Suppose that the columns of P ∈ Rn×(n−m) span the null space of G ∈ Rm×n and call P the
null space matrix. Thus

GP = 0 (5)

and, consistent with (4), admissible velocities may be written in the form

v = P� (6)

with independent generalized velocities � ∈ Rn−m. These quantities may be classified as quasi-
velocities because in general their time integrals need not result in generalized coordinates (cf.
Reference [16]).

Using (6), the reduced form of the kinetic energy T̃ is defined by

T̃ (q, �) = 1
2 �TM̃� (7)

with the reduced mass matrix

M̃ = PTMP (8)

Note that M̃ is generally configuration-dependent and assumed to be positive definite. The null
space matrix can be employed to eliminate the forces of constraint. Specifically, premultiplying
(1)2 by PT and making use of (5) and (6) yields the alternative reduced formulation

q̇ − P� = 0

M̃�̇ + PTMṖ� + PT∇V (q) = 0

�(q) = 0

(9)

which governs the motion of the constrained mechanical system. In essence, the reduced
formulation coincides with the d’Alembert-type formulation in Part I. A further size-reduction
may be achieved by introducing appropriate ‘generalized’ coordinates for the parametrization
of the configuration manifold Q.

2.2. Discrete null space method

The discrete null space method relies on the direct discretization of the constrained formulation
(1), followed by a size-reduction of the nonlinear algebraic system to be solved. The discrete
size-reduction can be viewed as discrete analogue of the continuous reduction procedure outlined
above.

2.2.1. Direct discretization of the DAEs. In the present work, the DAEs (1) provide the under-
lying framework for the description of multibody systems. We choose to apply the following
time discretization of the DAEs:

qn+1 − qn = �tvn+1/2

M[vn+1 − vn] = −�t∇̄V (qn, qn+1) − �tG(qn, qn+1)
T�̄

�(qn+1) = 0

(10)
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It is worthwhile noting that the constrained scheme (10) is energy consistent and conserves
momentum maps associated with symmetries of the underlying mechanical system. Further
details of the constrained scheme can be found in Part I of this work.

2.2.2. Discrete size-reduction
Discrete null space matrix: Similar to the continuous framework, the discrete null space ma-
trix P(qn, qn+1) ∈ Rn×(n−m) is required for the elimination of the discrete multipliers �̄ ∈ Rm.
Specifically, we need to set up P(qn, qn+1) ∈ Rn×(n−m) such that,

range(P(qn, qn+1)) = null(G(qn, qn+1)) (11)

Note that due to the properties of the discrete constraint Jacobian G(qn, qn+1) ∈ Rm×n (cf.
Equation (18) in Part I), the mid-point velocities may be expressed as

vn+1/2 = P(qn, qn+1)w (12)

with w ∈ Rn−m. The last equation can be interpreted as discrete version of (6). One major goal
of this work is to find appropriate explicit representations of the discrete null space matrix
P(qn, qn+1) ∈ Rn×(n−m) for multibody systems comprised of rigid bodies. In particular, the
following two steps are proposed for the construction of viable discrete versions of the null
space matrix:

Step 1: Set up an explicit representation of the continuous null space matrix P(q) by
employing relationship (6).

Step 2: Find a proper discrete version P(qn, qn+1) of the null space matrix such that the
following design conditions are fulfilled:

(i) In the limit of vanishing time steps, �t → 0, the discrete version has to coincide
with the continuous one. That is,

P(qn, qn+1) → P(qn) as qn+1 → qn (13)

(ii) To satisfy property (11), we further require that

G(qn, qn+1)P(qn, qn+1) = 0 (14)

As it has been shown in Part I, due to property (11), the discrete multipliers can be eliminated
from (10). The resulting scheme can be used to solve for qn+1 ∈ Rn (see Section 3.2. in Part I).

Reparametrization of unknowns: If convergence of the solution procedure has been attained,
qn+1 ∈ Q, i.e. the solution belongs to the proper configuration manifold Q ⊂ Rn. This feature of
the constrained scheme (10) facilitates the introduction of incremental (generalized) coordinates
u ∈ U ⊂ Rn−m for the parametrization of the constraint manifold Q in the neighbourhood of
qn ∈ Q. We thus introduce a mapping Fqn : U �→ Q, such that,

qn+1 = Fqn(u) (15)

The final scheme can be applied to determine u ∈ Rn−m (see Section 3.3. in Part I). We empha-
size that the whole size-reduction of the discrete formulation does not affect the advantageous
approximation properties of the underlying constrained scheme (cf. Section 3.4. in Part I).
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3. RIGID BODIES

In the present work, we make use of a specific formulation of rigid bodies [5] which directly
fits into the framework for constrained mechanical systems provided by the DAEs (1). The
constrained formulation circumvents the need for using angular velocities and accelerations in
the time discretization. Indeed the present discretization does not involve any type of rotational
parameters. This is in contrast to time-stepping schemes based on the classical Euler’s equations
for rigid bodies (see, for example, References [9, 17, 18]).

The formulation of rigid bodies as discrete mechanical system subject to constraints
appears to be especially beneficial to the description of multibody dynamics (cf. Refer-
ences [4, 19–22]). This is due to the fact that both ‘internal’ constraints associated with the
rigidity of the bodies and ‘external’ constraints arising from the presence of joints can be dealt
with on an equal footing.

The present constrained formulation of rigid bodies [5] relies on redundant absolute coordi-
nates. Consequently, the (internal) constraints of rigidity are quadratic in the coordinates. Even
the additional (external) constraints corresponding to the lower kinematic pairs dealt with in
Section 4 turn out to be at most quadratic.

3.1. Constrained formulation of rigid body dynamics

The configuration of a rigid body in three-dimensional Euclidean space can be characterized by
the placement of its centre of mass �(t) ∈ R3 and a right-handed body frame {dI }, dI (t) ∈ R3

(I = 1, 2, 3), which specifies the orientation of the body (Figure 1). The vectors dI will be
occasionally called directors.

Let X = Xiei
¶ be a material point which belongs to the reference configuration V ⊂ R3 of

the rigid body. The spatial position of X ∈ V at time ‘t’ relative to an inertial Cartesian basis
{eI } can now be characterized by

x(X, t) = �(t) + Xidi (t) (16)

For simplicity, we assume that the axes of the body frame are aligned with the principal axes
of the body. Then the kinetic energy of the rigid body can be written as

T = 1

2
M�‖v�‖2 + 1

2

3∑
I=1

EI‖vI‖2 (17)

where v� = �̇, vI = ḋI and

M� =
∫

V

�(X) dV

EI =
∫

V

(XI )
2�(X) dV

(18)

¶In this work the summation convention applies to repeated lower case Roman indices.
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Figure 1. Configuration of a rigid body with respect to an orthonormal frame {eI } fixed in space.

Here, �(X) is the mass density at X ∈ V , M� is the total mass of the body and EI are the
principal values of the Euler tensor with respect to the centre of mass. Note that the spectral
decomposition of the current Euler tensor with respect to the centre of mass is given by

E =
3∑

I=1
EI dI ⊗ dI (19)

The Euler tensor is symmetric positive definite, and can be linked to the customary inertia
tensor via the relationship

J = (tr E)I − E (20)

Obviously, the configuration of the rigid body can be characterized by the vector of redundant
coordinates‖

q = (�, {dI }) ∈ R3 × R9 ∼= R12 (21)

Correspondingly, the vector of redundant velocities may be written in the form

v = (v�, {vI }) ∈ R12 (22)

Expression (17) leads to the constant mass matrix

M =

⎡⎢⎢⎢⎢⎢⎣
M�I 0 0 0

0 E1I 0 0

0 0 E2I 0

0 0 0 E3I

⎤⎥⎥⎥⎥⎥⎦ (23)

‖All vectors are to be formally regarded as column vectors although we sometimes abuse this convention for
notational convenience.
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where I and 0 are the 3 × 3 identity and zero matrices. Due to the assumption of rigidity, the
body frame has to stay orthonormal for all times. Thus there are m = 6 independent internal
constraints with associated constraint functions.

�int(q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 [dT

1 d1 − 1]
1
2 [dT

2 d2 − 1]
1
2 [dT

3 d3 − 1]
dT

1 d2

dT
1 d3

dT
2 d3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(24)

The internal constraints thus give rise to the corresponding 6 × 12 constraint Jacobian.

Gint(q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0T dT
1 0T 0T

0T 0T dT
2 0T

0T 0T 0T dT
3

0T dT
2 dT

1 0T

0T dT
3 0T dT

1

0T 0T dT
3 dT

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(25)

The equations of motion of the constrained system at hand can now be written in the form of
the DAEs (1). Alternatively, one may apply the reduced form (9).

3.2. Reduced equations of motion for the rigid body

We next particularize the reduced equations of motion (9) for the rigid body. To this end an
appropriate form of the null space matrix needs be found. This can be achieved by expressing
the redundant velocities v ∈ R12 of the (free) rigid body in terms of its twist. The twist is
comprised of the angular velocity � ∈ R3 and the translational velocity v� ∈ R3 of the rigid
body (see, for example, Reference [23]). It may be written as

t =
[

v�

�

]
(26)

The director velocities vI ∈ R3 can now be expressed in terms of the angular velocity of the
rigid body through

vI = � × dI =−d̂I� (27)
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Here, â denotes the skew-symmetric 3 × 3 matrix with corresponding axial vector a ∈ R3, that is

â =

⎡⎢⎢⎣
0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤⎥⎥⎦ (28)

In view of (6), the components of the twist t ∈ R6 play the role of independent generalized
velocities for the free rigid body. Thus, we get the relationship v = Pintt, which implies that
the null space matrix for the free rigid body may be written as

Pint(q) =

⎡⎢⎢⎢⎢⎢⎢⎣

I 0

0 −d̂1

0 −d̂2

0 −d̂3

⎤⎥⎥⎥⎥⎥⎥⎦ (29)

It can be easily verified that (i) the matrix in (29) has full column rank and, (ii) with regard
to (25), GintPint = 0, the 6 × 6 zero matrix. The matrix in (29) thus qualifies perfectly as null
space matrix.

The reduced mass matrix (8) pertaining to the rigid body can now be calculated by employing
(23) and the null space matrix (29). Accordingly,

M̃ = PT
intMPint =

⎡⎢⎣M�I 0

0 −
3∑

I=1
EI (d̂I )

2

⎤⎥⎦ (30)

On the other hand,

−
3∑

I=1
EI (d̂I )

2 = −
3∑

I=1
EI [dI ⊗ dI − (dT

I dI )I]

= −
3∑

I=1
EI dI ⊗ dI +

3∑
I=1

EI I (31)

In the last equation, the property dT
I dI = 1 (I = 1, 2, 3) has been incorporated, which follows

from the geometric constraints. Taking into account tr E =∑3
I=1 EI together with (20), the last

equation yields

−
3∑

I=1
EI (d̂I )

2 = J (32)

Accordingly, the reduced mass matrix of the rigid body can be written as

M̃ =
[

M�I 0

0 J

]
(33)
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In order to calculate the term PTMṖ� in (9)2, we first perform the time derivative of the null
space matrix which yields

Ṗint =

⎡⎢⎢⎢⎢⎢⎣
0 0

0 −v̂1

0 −v̂2

0 −v̂3

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎣

0 0

0 ̂d1 × �

0 ̂d2 × �

0 ̂d3 × �

⎤⎥⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
0 0

0 � ⊗ d1 − d1 ⊗ �

0 � ⊗ d2 − d2 ⊗ �

0 � ⊗ d3 − d3 ⊗ �

⎤⎥⎥⎥⎥⎥⎦ (34)

A straightforward calculation then gives the relationship

PT
intMṖintt =

⎡⎢⎢⎣
0

−� ×
(

3∑
I=1

EI dI ⊗ dI

)
�

⎤⎥⎥⎦=
[

0

� × J�

]
(35)

where, (20) has been made use of. Finally, the last term in (9)2 yields

PT
int∇V (q) =

⎡⎢⎣ �V/��

3∑
I=1

dI × �V/�dI

⎤⎥⎦=:−
[

f̄

m̄

]
(36)

where f̄ and m̄ is the resultant external force and torque relative to the centre of mass of the
rigid body, respectively. To summarize, the reduced equations of motion in (9)2 can be written
in the familiar form,

M�v̇� = f̄

J�̇ + � × J� = m̄
(37)

which represents the well-known Newton–Euler equations for rigid bodies.

3.3. Discrete null space method

The constrained scheme (10) can be directly applied to the present formulation of rigid body
dynamics. In this connection, the discrete constraint Jacobian needs be specified. Since the
internal constraints (24) are quadratic, the discrete constraint Jacobian coincides with the mid-
point evaluation of the constraint Jacobian (25), i.e.

Gint(qn, qn+1) = Gint(qn+1/2) (38)

The implementation of the constrained scheme (cf. Section 3.1.3. in Part I) for the free rigid
body leads to a nonlinear system of algebraic equations in terms of n + m = 18 unknowns. It
is worth noting that the present discretization approach for rigid bodies (i) does not involve
any rotational parameters, and (ii) yields a second-order accurate energy-momentum method
(see also Reference [5]).
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3.3.1. Discrete null space matrix. We next apply the two-step procedure outlined in
Section 2.2.2 for the design of a discrete null space matrix pertaining to the free rigid body.
Step 1 has already been performed and yields the null space matrix Pint(q) in (29). Then Step
2 gives rise to the discrete version of the null space matrix

Pint(qn, qn+1) = Pint(qn+1/2) (39)

or

Pint(qn, qn+1) =

⎡⎢⎢⎢⎢⎢⎢⎣

I 0

0 −(d̂1)n+1/2

0 −(d̂2)n+1/2

0 −(d̂3)n+1/2

⎤⎥⎥⎥⎥⎥⎥⎦ (40)

3.3.2. Reparametrization of the unknowns. Due to the six constraints of orthonormality (24),
the configuration space of the free rigid body is

Q = R3 × SO(3) ⊂ R3 × R9 (41)

where SO(3) is the special orthogonal group. A reduction of the number of unknowns can now
be achieved by introducing a rotation matrix R(�) ∈ SO(3) parametrized in terms of � ∈ R3,
such that

(dI )n+1 = R(�)(dI )n (42)

Thus, the three rotational variables � ∈ R3 play the role of new incremental unknowns which
can be used to express the original nine unknowns associated with the directors (dI )n+1 ∈ R3

(I = 1, 2, 3). Concerning the rotation matrix, we choose to make use of the Rodrigues formula,
which may be interpreted as closed-form expression of the exponential map (see, for example,
Reference [24]):

R(�) = exp(̂�) = I + sin ‖�‖
‖�‖ �̂ + 1

2

(
sin (‖�‖/2)

‖�‖/2

)2

(̂�)2 (43)

When the above reparametrization of unknowns is applied, the configuration of the free rigid
body is specified by six unknowns u = (u�, �) ∈ U ⊂ R3 × R3, characterizing the incremental
displacement and the incremental rotation, respectively. Accordingly, in the present case the
mapping Fqn : U �→ Q assumes the form

qn+1 = Fqn(u) =

⎡⎢⎢⎢⎢⎢⎢⎣

�n + u�

exp(̂�)(d1)n

exp(̂�)(d2)n

exp(̂�)(d3)n

⎤⎥⎥⎥⎥⎥⎥⎦ (44)

We finally remark that the present use of rotation matrix (43) is restricted to a single time step
such that possible singularities of (43) are not an issue in practical applications.
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4. MULTIBODY SYSTEMS

We next illustrate the present approach to multibody systems by considering a system consisting
of two rigid bodies interconnected by different types of joints. In particular, we consider two
rigid links of a simple kinematic chain that are coupled by lower kinematic pairs.

4.1. Lower kinematic pairs

With regard to Section 3, the configuration of the �th rigid link in a kinematic chain can
be characterized by redundant coordinates q� ∈ R12. Thus, the configuration of two rigid links
denoted by 1 and 2, can be characterized by 24 redundant coordinates, which may be arranged
in the configuration vector

q =
⎡⎣q1

q2

⎤⎦ (45)

The constrained formulation of each rigid body leads to constraint functions �i
int ∈ R6 of form

(24) along with constraint Jacobians Gi
int of form (25). For the two-body system at hand, we

thus get

�int(q) =
⎡⎣�1

int(q
1)

�2
int(q

2)

⎤⎦ (46)

together with

Gint(q) =
⎡⎣G1

int(q
1) 0

0 G2
int(q

2)

⎤⎦ (47)

Accordingly, the two-body system under consideration leads to mint = 12 internal constraints
with associated constraint Jacobian Gint ∈ R12×24. The coupling of the two bodies by means
of a specific joint leads to further constraints, termed external constraints. Table I, contains
a summary of lower kinematic pairs, J ∈ {R, P, C, S, E}, that will be investigated in the
following. Depending on the number of external constraints, m

(J)
ext , the degrees of freedom

(DOF) of the relative motion of one body with respect to the other is decreased. We refer to
References [23, 25] for more background on kinematic pairs.

Each kinematic pair is characterized by altogether m(J) = mint + m
(J)
ext constraints. The cor-

responding constraint functions may be arranged in the vector �(J ) ∈ Rm(J)
, which may be

written in partitioned form,

�(J )(q) =
[

�int(q)

�(J )
ext (q)

]
(48)
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Table I. Lower kinematic pairs considered in the present work.

Kinematic Number of external DOF of the DOF of the

pair (J ) constraints m
(J)
ext relative motion r(J ) pair d(J )

Rotational (R) 5 1 7
Prismatic (P ) 5 1 7
Cylindrical (C) 4 2 8
Spherical (S) 3 3 9
Planar (E) 3 3 9

Similarly, the constraint Jacobian G(J ) ∈ Rm(J)×24 pertaining to a specific kinematic pair can
be written as

G(J )(q) =
[

Gint(q)

G(J )
ext (q)

]
(49)

The equations of motion of each kinematic pair assume the form of the DAEs (1). In this
connection, the constant mass matrix M ∈ R24×24 is given by

M =
⎡⎣M1 0

0 M2

⎤⎦ (50)

where each submatrix M� ∈ R12×12 coincides with (23).

4.2. Design of continuous null space matrices

In this section, we outline the construction of continuous null space matrices (Step 1 of the
procedure in Section 2.2.2) for the kinematic pairs under consideration. Similar to the case of
a single rigid body treated in Section 3.2, we introduce the twist of the kinematic pair,

t =
⎡⎣t1

t2

⎤⎦ (51)

where, analogous to (26), the twist of the �th body t� ∈ R6, is given by

t� =
[

v�
�

��

]
(52)

Now, similar to (29), the redundant velocities v = q̇ ∈ R24 of the kinematic pair may be
expressed as

v = Pintt (53)
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where the 24 × 12 matrix Pint is given by

Pint(q) =
⎡⎣P1

int(q
1) 0

0 P2
int(q

2)

⎤⎦ (54)

and P�
int is the null space matrix associated with the �th free body. With regard to (29) we

have

P�
int =

⎡⎢⎢⎢⎢⎢⎢⎣

I 0

0 −d̂�
1

0 −d̂�
2

0 −d̂�
3

⎤⎥⎥⎥⎥⎥⎥⎦ (55)

Note that, by design, GintPint = 0, the 12 × 12 zero matrix.
In a kinematic pair, J ∈ {R, P, C, S, E}, the interconnection of the two rigid bodies by means

of a specific joint restricts the relative motion of the second body with respect to the first body
(cf. Table I). The relative motion can be accounted for by introducing r(J ) = 6 − m

(J)
ext joint

velocities �(J ). Thus, the motion of the kinematic pair can be characterized by d(J ) = 6 + r(J )

independent generalized velocities.

�(J ) =
⎡⎣ t1

�(J )

⎤⎦ (56)

In particular, introducing the 6 × d(J ) matrix P2, (J )
ext , the twist of the second body t2 ∈ R6 can

be expressed as

t2, (J ) = P2, (J )
ext �(J ) (57)

Accordingly, the twist of the kinematic pair J ∈ {R, P, C, S, E} can be written in the form,

t(J ) = P(J )
ext �

(J ) (58)

with the 12 × d(J ) matrix P(J )
ext , which may be partitioned according to

P(J )
ext =

[
I6×6 06×r(J )

P2, (J )
ext

]
(59)

Once P(J )
ext has been established, the total null space matrix pertaining to the kinematic pair

under consideration can be calculated from,

P(J ) = PintP
(J )
ext (60)
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or, in partitioned form,

P(J ) =
⎡⎣P1

int 012×r(J )

P2
intP

2, (J )
ext

⎤⎦ (61)

The above procedure warrants the design of viable null space matrices which automatically
satisfy the relationship,

G(J )P(J ) = 0 (62)

To see this, calculate

G(J )P(J ) =
⎡⎣GintPintP

(J )
ext

G̃(J )
ext P(J )

ext

⎤⎦ (63)

where the m
(J)
ext × 12 matrix G̃(J )

ext is given by

G̃(J )
ext = G(J )

ext Pint (64)

Since, by construction, GintPint = 0, the upper block in (63) is equal to the 12 × d(J ) zero
matrix. In addition to that, the lower block in (63) is equal to the m

(J)
ext × d(J ) zero matrix,

provided that P2, (J )
ext has been properly deduced from (57).

To summarize, in order to construct a null space matrix pertaining to a specific kinematic
pair, we essentially apply relationship (57) to deduce the matrix P2, (J )

ext . Once P2, (J )
ext has been

determined, the complete null space matrix pertaining to a specific pair follows directly from
(61).

Remark 4.1
Similar to the above procedure for the design of null space matrices, the relationship
between rigid body twists, and joint velocities is used in Reference [15] to deduce the ‘natural
orthogonal complement’ in the context of simple kinematic chains comprised of elementary
kinematic pairs.

4.3. Design of discrete null space matrices

We next apply Step 2 of the procedure in Section 2.2.2, to set up discrete null space matrices
for the kinematic pairs under consideration. It is obvious from the above treatment of the single
rigid body, that the discrete counterparts of Gint and Pint are given by

Gint(qn, qn+1) = Gint(qn+1/2)

Pint(qn, qn+1) = Pint(qn+1/2)
(65)

It can be easily checked that,

Gint(qn+1/2)Pint(qn+1/2) = 0 (66)
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It is shown in Section 4.5, that all external constraint functions associated with the kinematic
pairs under consideration are at most quadratic in the redundant coordinates. Consequently, due
to the properties of the discrete derivative, the discrete constraint Jacobians are given by

G(J )
ext (qn, qn+1) = G(J )

ext (qn+1/2) (67)

for J ∈ {R, P, C, S, E}.
Guided by the design of continuous null space matrices in the last section, we now set

P(J )(qn, qn+1) = Pint(qn+1/2)P
(J )
ext (qn, qn+1) (68)

where the discrete version of (59) is given by

P(J )
ext (qn, qn+1) =

[
I6×6 06×r(J )

P2, (J )
ext (qn, qn+1)

]
(69)

Note that (65)2 has been accounted for in (68). Equation (68) together with (69), yields the
discrete null space matrix pertaining to a specific kinematic pair.

P(J )(qn, qn+1) =
⎡⎣ P1

int(q
1
n+1/2) 012×r(J )

P2
int(q

2
n+1/2)P

2, (J )
ext (qn, qn+1)

⎤⎦ (70)

It thus remains to provide a discrete version of P2, (J )
ext (q). To this end we now require the

fulfillment of condition (14). In the present case, we get

G(J )(qn+1/2)P(J )(qn, qn+1) =
⎡⎣Gint(qn+1/2)Pint(qn+1/2)P

(J )
ext (qn, qn+1)

G̃(J )
ext (qn+1/2)P

(J )
ext (qn, qn+1)

⎤⎦ (71)

with

G̃(J )
ext (qn+1/2) = G(J )

ext (qn+1/2)Pint(qn+1/2) (72)

Note that in the above formulae (65) and (67) have been taken into account. We further,
remark that (71) can be viewed as the discrete counterpart of (63). It follows from (72) that
G̃(J )

ext (qn+1/2) is prescribed for each kinematic pair J ∈ {R, P, C, S, E}. Substituting (66) into
(71) yields,

G(J )(qn+1/2)P(J )(qn, qn+1) =
[

0

G̃(J )
ext (qn+1/2)P

(J )
ext (qn, qn+1)

]
(73)

In order to complete Step 2 of the design procedure, we finally demand that

P(J )
ext (qn, qn+1) → P(J )

ext (qn) as qn+1 → qn

G̃(J )
ext (qn+1/2)P

(J )
ext (qn, qn+1) = 0

(74)
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The design conditions in (74) can be used to determine a proper discrete version of P(J )
ext (or,

in view of (69), P2, (J )
ext ). Then the discrete null space matrix pertaining to a specific kinematic

pair follows from (70).

4.4. Reparametrization of unknowns

The redundant coordinates q ∈ R24 of each kinematic pair J ∈ {R, P, C, S, E} may be
expressed, in terms of d(J ) = 12 − m

(J)
ext independent generalized coordinates. Concerning, the

reparametrization of unknowns in the discrete null space method, we seek for relationships of
the form

qn+1 = F(J )
qn

(�(J )) (75)

where

�(J ) = (u1
�, �1,W(J )

) ∈ Rd(J )

(76)

consists of a minimal number of incremental unknowns for a specific kinematic pair. In (76),
(u1

�, �1) ∈ R3 × R3 are incremental displacements and rotations, respectively, associated with

the first body (cf. Section 3.3.2). Furthermore, W(J ) ∈ Rr(J )
are incremental unknowns, which

characterize the configuration of the second body relative to the first one. In view of (45), the
mapping in (75) may be partitioned according to

F(J )
qn

(�(J )) =
⎡⎣F1

q1
n
(u1

�, �1)

F2,(J )
qn

(�(J ))

⎤⎦ (77)

Alternatively, we may write

q1
n+1 = F1

q1
n
(u1

�, �1)

q2
n+1 = F2,(J )

qn
(�(J ))

(78)

Here, F1
q1
n
(u1

�, �1) is given by (44). It thus remains to specify the mapping F2,(J )
qn

(�(J )) for

each kinematic pair under consideration. Of course, the mapping F(J )
qn

is required to satisfy the

constraints specified by (48), i.e. �(J )(F(J )
qn

) = 0, for arbitrary �(J ).

4.5. Treatment of specific kinematic pairs

We next provide the details of the treatment of specific kinematic pairs J ∈ {R, P, C, S, E}. In
essence, the present approach requires the specification of (i) the external constraint function
�(J )

ext , along with the corresponding constraint Jacobian G(J )
ext , and (ii) the null space matrix

P2,(J )
ext , which is needed to set up the complete null space matrix (61) as described in Section 4.2.

The corresponding discrete null space matrix is then deduced according to the procedure outlined
in Section 4.3. Finally, (iii) the mapping F2,(J )

qn
(�(J )) is specified, which is needed to perform

the reparametrization of unknowns according to (77), as described in Section 4.4.
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In the following, we suppose that the location of a specific joint on each body is characterized
by coordinates ��

i with respect to the respective body frame:

X� = ��
i d�

i (79)

for � = 1, 2.

4.5.1. Spherical pair
Constraints and constraint Jacobian: The S pair (Figure 2) entails three external constraints of
the form

�(S)
ext (q) = �2 − �1 + X2 − X1 = 0 (80)

The corresponding constraint Jacobian is given by the constant 3 × 24 matrix.

G(S)
ext (q) = [−I − �1

1I − �1
2I − �1

3I I �2
1I �2

2I �2
3I] (81)

Continuous form of the null space matrix: The motion of body 2 relative to body 1 is
characterized by r(S) = 3 DOF. Specifically, with regard to (56), we choose �(S) = �2, the
angular velocity of the second body. Accordingly, in the present case, the vector of independent
generalized velocities reads

�(S) =
⎡⎣ t1

�2

⎤⎦ (82)

Recall that the twist of the first rigid body is given by t1 = (v1
�, �1). Taking the time deriva-

tive of the external constraints (80) and expressing the redundant velocities in terms of the
independent generalized velocities (82) yields,

v2
� = v1

� + �1 × X1 − �2 × X2 (83)

Now it can be easily deduced from the relationship t2,(S) = P2,(S)
ext �(S), that

P2,(S)
ext (q) =

[
I −X̂1 X̂2

0 0 I

]
(84)

so that (59) yields

P(S)
ext =

[
I6×6 06×3

P2,(S)
ext

]
(85)

Furthermore, the null space matrix for the S pair follows directly from (61). It is given by

P(S)(q) =
⎡⎣P1

int 06×3

P2
intP

2,(S)
ext

⎤⎦ (86)
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Figure 2. Spherical pair.

with

P2
intP

2,(S)
ext =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I −X̂1 X̂2

0 0 −d̂2
1

0 0 −d̂2
2

0 0 −d̂2
3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(87)

It is worth mentioning that in the present case (64) reads

G̃(S)
ext = G(S)

ext Pint = [−I X̂1 I − X̂2] (88)

so that, as expected, the present design procedure for P2,(S)
ext guarantees that

G̃(S)
ext P(S)

ext = 0 (89)

Discrete version of the null space matrix: To set up, the discrete counterpart of the null
space matrix P(S)(q), we apply the procedure described in Section 4.3. To this end we choose

P2,(S)
ext (qn, qn+1) = P2,(S)

ext (qn+1/2) (90)
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It can be easily verified, that this choice fulfills the design conditions (74). In particular, it is
obvious from (89) that

G̃(S)
ext (qn+1/2)P

(S)
ext (qn+1/2) = 0 (91)

Accordingly, we get

P(S)(qn, qn+1) = P(S)(qn+1/2) (92)

as discrete null space matrix for the S pair.
Reparametrization of unknowns: To specify, the reduced set of incremental unknowns (76)

for the S pair, we choose W(S) = �2 ∈ R3, the incremental rotation vector pertaining to the
second body. Then the rotational update of the body frame associated with the second body
can be performed according to

(d2
I )n+1 = exp(�̂2)(d2

I )n (93)

Enforcing the external constraints (80) at the end of the time step implies

�2
n+1 = �1

n+1 + X1
n+1 − X2

n+1 (94)

Eventually, the last two equations can be used to determine the mapping F2,(S)
qn

(�(S)).

q2
n+1 = F2,(S)

qn
(�(S)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�1
n + u1

� + exp(�̂1)X1
n − exp(�̂2)X2

n

exp(�̂2)(d2
1)n

exp(�̂2)(d2
2)n

exp(�̂2)(d2
3)n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(95)

4.5.2. Cylindrical pair. For the C pair (Figure 3) we introduce a unit vector n1 which is fixed
at the first body, and specified by constant components n1

i with respect to the body frame {d1
i }

n1 = n1
i d1

i (96)

In addition to that, we introduce two vectors

m1
� = (m1

�)id
1
i (97)

such that {m1
1, m1

2, n1} constitute a right-handed orthonormal frame. The motion of the second
body relative to the first one can be described by r(C) = 2 DOF. Translation along n1 and
rotation about n1. The translational motion along n1 may be characterized by the displacement
u2 ∈ R, such that (see Figure 3)

�1 + X1 + u2n1 = �2 + X2 (98)

For the subsequent treatment, it proves convenient to introduce the vectors

p� = �� + X� (99)

for � = 1, 2.
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Figure 3. Cylindrical pair.

Constraints and constraint Jacobian: The C pair entails m
(C)
ext = 4 external constraint functions

that may be written in the form

�(C)
ext (q) =

⎡⎢⎢⎢⎢⎢⎣
(m1

1)
T(p2 − p1)

(m1
2)

T(p2 − p1)

(n1)Td2
1 − �1

(n1)Td2
2 − �2

⎤⎥⎥⎥⎥⎥⎦ (100)

where �1, �2 are constant, and need to be consistent with the initial conditions. The first two
components of (100) conform with (98) and thus, confine the translational motion of the second
body relative to the first one. Similarly, the last two components of (100) restrict the relative
rotational motion. The constraint Jacobian associated with (100) is given by the 4 × 24 matrix

G(C)
ext (q) =

⎡⎢⎢⎢⎢⎢⎢⎣
−(m1

1)
T GT

11 GT
12 GT

13 (m1
1)

T �2
1(m

1
1)

T �2
2(m

1
1)

T �2
3(m

1
1)

T

−(m1
2)

T GT
21 GT

22 GT
23 (m1

2)
T �2

1(m
1
2)

T �2
2(m

1
2)

T �2
3(m

1
2)

T

0T n1
1(d

2
1)

T n1
2(d

2
1)

T n1
3(d

2
1)

T 0T (n1)T 0T 0T

0T n1
1(d

2
2)

T n1
2(d

2
2)

T n1
3(d

2
2)

T 0T 0T (n1)T 0T

⎤⎥⎥⎥⎥⎥⎥⎦
(101)

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 67:499–552



520 P. BETSCH AND S. LEYENDECKER

with

G�i = (m1
�)i(p

2 − p1) − �1
i m1

� (102)

for � = 1, 2 and i = 1, 2, 3.
Continuous form of the null space matrix: Corresponding to the r(C) = 2 DOF, characterizing

the motion of the second body relative to the first one, we choose

�(C) =
⎡⎣ u̇2

�̇
2

⎤⎦ (103)

where, in addition to u2 already introduced in (98), �̇
2

accounts for the angular velocity of the
second body relative to the first one. Specifically, we get

�2 = �1 + �̇
2
n1 (104)

The vector of independent generalized velocities pertaining to the C pair is now given by

�(C) =

⎡⎢⎢⎢⎣
t1

u̇2

�̇
2

⎤⎥⎥⎥⎦ (105)

Differentiating (98) with respect to time and taking into account (104) and (98), a straightfor-
ward calculation yields

v2
� = v1

� + �1 × (�2 − �1) + u̇2n1 + �̇
2X2 × n1 (106)

Now, the twist of the second body can be expressed in terms of the independent generalized
velocities via t2,(C) = P2,(C)

ext �(C), with the 6 × 8 matrix

P2,(C)
ext (q) =

⎡⎣ I ̂�1 − �2 n1 X2 × n1

0 I 0 n1

⎤⎦ (107)

Then (59) yields

P(C)
ext =

[
I6×6 06×2

P2,(C)
ext

]
(108)

Finally, with regard to (61), the null space matrix for the C pair is given by

P(C)(q) =
⎡⎣P1

int 06×2

P2
intP

2,(C)
ext

⎤⎦ (109)
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with

P2
intP

2,(C)
ext =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I ̂�1 − �2 n1 X2 × n1

0 −d̂2
1 0 n1 × d2

1

0 −d̂2
2 0 n1 × d2

2

0 −d̂2
3 0 n1 × d2

3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(110)

For later use, we calculate matrix (64), which in the present case is given by the 4 × 12 matrix

G̃(C)
ext = G(C)

ext Pint =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−(m1
1)

T −GT
1i d̂

1
i (m1

1)
T −(m1

1)
TX̂2

−(m1
2)

T −GT
2i d̂

1
i (m1

2)
T −(m1

2)
TX̂2

0T −(d2
1)

Tn̂1 0T −(n1)Td̂2
1

0T −(d2
2)

Tn̂1 0T −(n1)Td̂2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(111)

It can be easily checked by a straightforward calculation, that the present design procedure for
P2,(C)

ext ensures that

G̃(C)
ext P(C)

ext = 0 (112)

Discrete version of the null space matrix: In the present case, the discrete null space matrix
does not coincide with P(C)(qn+1/2). Instead, applying the procedure described in Section 4.3,
we choose

P2,(C)
ext (qn, qn+1)

=
⎡⎣ I ̂�1

n+1/2 − �2
n+1/2 (m1

1)n+1/2 × (m1
2)n+1/2 X2

n+1/2 × n1
n+1/2

0 I 0 n1
n+1/2

⎤⎦ (113)

In this connection, we remark that in general (m1
1)n+1/2 × (m1

2)n+1/2 does not coincide with
n1

n+1/2, although m1
1 × m1

2 = n1
1 in the continuous case. This is due to the fact that, in the

discrete setting, the internal constraints of orthonormality of the d1
i ’s are only enforced at the

time nodes. In any case, it can be easily verified that (113) fulfills the design conditions (74).
Finally, in view of (70), the discrete null space matrix for the C pair assumes the form

P(C)(qn, qn+1) =
⎡⎣ P1

int(q
1
n+1/2) 06×2

P2
int(q

2
n+1/2)P

2,(C)
ext (qn, qn+1)

⎤⎦ (114)
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where

P2
int(q

2
n+1/2)P

2,(C)
ext (qn, qn+1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I ̂�1
n+1/2 − �2

n+1/2 (m1
1)n+1/2 × (m1

2)n+1/2 X2
n+1/2 × n1

n+1/2

0 −(d̂2
1)n+1/2 0 n1

n+1/2 × (d2
1)n+1/2

0 −(d̂2
2)n+1/2 0 n1

n+1/2 × (d2
2)n+1/2

0 −(d̂2
3)n+1/2 0 n1

n+1/2 × (d2
3)n+1/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(115)

Reparametrization of unknowns: For the C pair, the configuration of the second body with
respect to the first one can be characterized by W(C) = (u2, �2) ∈ R2. Here, �2 accounts for the
incremental relative rotation, which may be expressed via the product of exponentials formula

(d2
I )n+1 = exp(�̂1) exp(�2(n̂1)n)(d2

I )n (116)

Enforcing the external constraints (98) at the end of the time step implies

�2
n+1 = �1

n+1 + X1
n+1 − X2

n+1 + (u2
n + u2)n1

n+1 (117)

Accordingly, the mapping F2,(C)
qn

(�(C)) can be written in the form

q2
n+1 = F2,(C)

qn
(�(C)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1
n + u1

� + exp(�̂1)[X1
n − exp(�2(n̂1)n)X2

n + (u2
n + u2)n1

n]

exp(�̂1) exp(�2(n̂1)n)(d2
1)n

exp(�̂1) exp(�2(n̂1)n)(d2
2)n

exp(�̂1) exp(�2(n̂1)n)(d2
3)n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(118)

4.5.3. Revolute pair. As for the cylindrical pair, we make use of the unit vector n1 given by
(96), which specifies the axis of rotation of the second body relative to the first one.

Constraints and constraint Jacobian: The R pair (Figure 4) entails m
(R)
ext = 5 external con-

straint functions, which may be written in the form

�(R)
ext (q) =

⎡⎢⎢⎢⎣
�2 − �1 + X2 − X1

(n1)Td2
1 − �1

(n1)Td2
2 − �2

⎤⎥⎥⎥⎦ (119)
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Figure 4. Revolute pair.

Analogous to the cylindrical pair �1, �2 are constant, and need to be consistent with the initial
conditions. The corresponding constraint Jacobian is given by the 5 × 24 matrix

G(R)
ext (q) =

⎡⎢⎢⎢⎣
−I −�1

1I −�1
2I −�1

3I I �2
1I �2

2I �2
3I

0T n1
1(d

2
1)

T n1
2(d

2
1)

T n1
3(d

2
1)

T 0T (n1)T 0T 0T

0T n1
1(d

2
2)

T n1
2(d

2
2)

T n1
3(d

2
2)

T 0T 0T (n1)T 0T

⎤⎥⎥⎥⎦ (120)

Continuous and discrete form of the null space matrix: Both the continuous and the discrete
null space matrix for the R pair can be directly inferred from the previous treatment of the
cylindrical pair. Since the R pair does not allow purely translational motion of the second body
relative to the first one, the corresponding column in the null space matrix (associated with
u̇2) of the C pair has to be eliminated. This is consistent with the fact that the R pair has
only one (r(R) =1) DOF which characterizes the rotational motion of the second body relative
to the first one. In particular, relationship (104) applies again. Note that, similar to (106), we
now have

v2
� = v1

� + �1 × (X1 − X2) + �̇
2X2 × n1 (121)
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which follows from differentiating with respect to time the first three constraint equations
resulting from (119) and taking into account (104). Now, similar to (107), (121) gives rise to

P2,(R)
ext (q) =

⎡⎣ I ̂X2 − X1 X2 × n1

0 I n1

⎤⎦ (122)

In this connection, we remark that the first three constraints resulting from (119), imply that
X2 − X1 = �1 −�2. Proceeding along the lines of the previous treatment of the C pair, we now
get

P(R)(q) =
⎡⎣P1

int 06×1

P2
intP

2,(R)
ext

⎤⎦ (123)

with

P2
intP

2,(R)
ext =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I ̂X2 − X1 X2 × n1

0 −d̂2
1 n1 × d2

1

0 −d̂2
2 n1 × d2

2

0 −d̂2
3 n1 × d2

3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(124)

In addition to that, the discrete null space matrix for the R pair follows from the mid-point
evaluation of (123), that is,

P(R)(qn, qn+1) = P(R)(qn+1/2) (125)

Reparametrization of unknowns: For the R pair, the mapping F2,(R)
qn

(�(R)) can be directly
obtained from that of the C pair by fixing u2 = 0. Then, the incremental rotational motion of
the second body relative to the first one is specified by ϑ(R) = �2 ∈ R. With regard to (118),
we thus get

q2
n+1 = F2,(R)

qn
(�(R)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1
n + u1

� + exp(�̂1)[X1
n − exp(�2(n̂1)n)X2

n]

exp(�̂1) exp(�2(n̂1)n)(d2
1)n

exp(�̂1) exp(�2(n̂1)n)(d2
2)n

exp(�̂1) exp(�2(n̂1)n)(d2
3)n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(126)

4.5.4. Prismatic pair. In the case of the P pair (Figure 5), translational motion of the second
body relative to the first one may occur along the axis specified by the unit vector n1, which,
as before is specified by (96). Analogous to (98), we get the kinematic relationship

�1 + X1 + u2n1 = �2 + X2 (127)

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 67:499–552



THE DISCRETE NULL SPACE METHOD 525

Figure 5. Prismatic pair.

Furthermore, the kinematic constraint

�2 = �1 (128)

applies to the P pair.
Constraints and constraint Jacobian: The P pair entails m

(P)
ext = 5 external constraint functions

that may be written in the form

�(P )
ext (q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(m1
1)

T(p2 − p1)

(m1
2)

T(p2 − p1)

(d1
1)

Td2
2 − �1

(d1
2)

Td2
3 − �2

(d1
3)

Td2
1 − �2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(129)

where the �i’s are constant, and need to be consistent with the initial conditions. Again m1
� ∈ R3

and p� ∈ R3 are given by (97) and (99), respectively. Note that the constraints resulting from
the last three components of (129) conform with (128). The constraint Jacobian emanating
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from (129) is given by the 5 × 24 matrix

G(P )
ext (q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(m1
1)

T GT
11 GT

12 GT
13 (m1

1)
T �2

1(m
1
1)

T �2
2(m

1
1)

T �2
3(m

1
1)

T

−(m1
2)

T GT
21 GT

22 GT
23 (m1

2)
T �2

1(m
1
2)

T �2
2(m

1
2)

T �2
3(m

1
2)

T

0T (d2
2)

T 0T 0T 0T 0T (d1
1)

T 0T

0T 0T (d2
3)

T 0T 0T 0T 0T (d1
2)

T

0T 0T 0T (d2
1)

T 0T (d1
3)

T 0T 0T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(130)

where the G�i’s are again given by (102).
Discrete null space matrix: To get proper representations of both the continuous and the

discrete null space matrices for the P pair, we adhere to the previous treatment of the C pair.

To this end, one essentially has to remove �̇
2
, so that only u̇2 remains to characterize the

motion of the second body relative to the first one (r(P ) = 1). Then (106) yields

v2
� = v1

� + �1 × (�2 − �1) + u̇2n1 (131)

such that

P2,(P )
ext (q) =

[
I ̂�1 − �2 n1

0 I 0

]
(132)

Analogous to (113), the discrete version of (132) is given by

P2,(P )
ext (qn, qn+1) =

⎡⎣ I ̂�1
n+1/2 − �2

n+1/2 (m1
1)n+1/2 × (m1

2)n+1/2

0 I 0

⎤⎦ (133)

such that the discrete null space matrix for the P pair can be written as

P(P )(qn, qn+1) =
⎡⎣ P1

int(q
1
n+1/2) 06 × 1

P2
int(q

2
n+1/2)P

2,(P )
ext (qn, qn+1)

⎤⎦ (134)

where

P2
int(q

2
n+1/2)P

2,(P )
ext (qn, qn+1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I ̂�1
n+1/2 − �2

n+1/2 (m1
1)n+1/2 × (m1

2)n+1/2

0 −(d̂2
1)n+1/2 0

0 −(d̂2
2)n+1/2 0

0 −(d̂2
3)n+1/2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(135)
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Reparametrization of unknowns: The mapping F2,(P )
qn

(�(P )) can be inferred from the corre-
sponding one for the C pair, Equation (118), by setting �2 = 0. Accordingly,

q2
n+1 = F2,(P )

qn
(�(P )) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1
n + u1

� + exp(�̂1)[X1
n − X2

n + (u2
n + u2)n1

n]

exp(�̂1)(d2
1)n

exp(�̂1)(d2
2)n

exp(�̂1)(d2
3)n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(136)

with incremental unknowns �(P ) = (u1
�, �1, u2) ∈ R3 × R3 × R.

4.5.5. Planar pair. As before in the context of the cylindrical pair, for the E pair (Figure 6),
we make use of the orthonormal frame {m1

1, m1
2, n1}, with n1 = n1

i d1
i and m1

� = (m1
�)id

1
i . In

the present case, the motion of the second body relative to the first one can be characterized
by r(E) = 3 DOF. Specifically, the second body may rotate about the axis specified by n1 and
translate in the plane spanned by m1

1 and m1
2. Correspondingly, the rotational motion can be

described by the kinematical relationship

�2 = �1 + �̇
2
n1 (137)

whereas, the relative translational motion may be accounted for by two coordinates (u2
1, u

2
2) ∈ R2,

such that

p2 = p1 + u2
�m1

� (138)

Note that, as before, p� = �� + X� for � = 1, 2.

Figure 6. Planar pair.
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Constraints and constraint Jacobian: The E pair gives rise to m
(E)
ext = 3 external constraint

functions, that may be written in the form

�(E)
ext (q) =

⎡⎢⎢⎢⎣
(n1)T(p2 − p1)

(n1)Td2
1 − �1

(n1)Td2
2 − �2

⎤⎥⎥⎥⎦ (139)

where �1, �2 are constant, and need to be consistent with the initial conditions. Note that
the first component of (139) conforms with (138), whereas the last two components of (139)
conform with (137). The constraint Jacobian emanating from (139) is given by, the 3 × 24
matrix

G(E)
ext (q) =

⎡⎢⎢⎢⎣
−(n1)T GT

1 GT
2 GT

3 (n1)T �2
1(n

1)T �2
2(n

1)T �2
3(n

1)T

0T n1
1(d

2
1)

T n1
2(d

2
1)

T n1
3(d

2
1)

T 0T (n1)T 0T 0T

0T n1
1(d

2
2)

T n1
2(d

2
2)

T n1
3(d

2
2)

T 0T 0T (n1)T 0T

⎤⎥⎥⎥⎦
(140)

with

Gi = n1
i (p

2 − p1) − �1
i n1 (141)

for i = 1, 2, 3.
Continuous form of the null space matrix: Differentiating (138) with respect to time and

taking into account (137), we obtain

v2
� = v1

� + �1 × (�2 − �1) + u̇2
�m1

� + �̇
2X2 × n1 (142)

The last equation in conjunction with (137) indicates that the twist of the second body

can be expressed in terms of the independent velocities �(E) = [t1, u̇2
1, u̇

2
2, �̇

2]T, such that

t2,(E) = P2,(E)
ext �(E). Here, the 6 × 9 matrix P2,(E)

ext is given by

P2,(E)
ext (q) =

⎡⎣ I ̂�1 − �2 m1
1 m1

2 X2 × n1

0 I 0 0 n1

⎤⎦ (143)

Then (59) yields

P(E)
ext =

[
I6×6 06×3

P2,(E)
ext

]
(144)

Finally, with regard to (61), the null space matrix for the E pair is given by

P(E)(q) =
⎡⎣P1

int 06×2

P2
intP

2,(E)
ext

⎤⎦ (145)
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with

P2
intP

2,(E)
ext =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I ̂�1 − �2 m1
1 m1

2 X2 × n1

0 −d̂2
1 0 0 n1 × d2

1

0 −d̂2
2 0 0 n1 × d2

2

0 −d̂2
3 0 0 n1 × d2

3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(146)

For later use, we calculate matrix (64), which in the present case is given by the 3 × 12 matrix

G̃(E)
ext = G(E)

ext Pint =

⎡⎢⎢⎢⎢⎣
−(n1)T −GT

i d̂1
i (n1)T −(n1)TX̂2

0T −(d2
1)

Tn̂1 0T −(n1)Td̂2
1

0T −(d2
2)

Tn̂1 0T −(n1)Td̂2
2

⎤⎥⎥⎥⎥⎦ (147)

It can be easily checked by a straightforward calculation that the present design procedure for
P2,(E)

ext ensures that

G̃(E)
ext P(E)

ext = 0 (148)

Discrete version of the null space matrix: In the present case, the discrete null space matrix
does not coincide with P(E)(qn+1/2). Instead, applying the procedure described in Section 4.3,
we choose

P2,(E)
ext (qn, qn+1)

=
⎡⎣ I ( ̂�1 − �2)n+1/2 (m1

2)n+1/2 × (n1)n+1/2 (n1)n+1/2 × (m1
1)n+1/2 X2

n+1/2 × n1
n+1/2

0 I 0 0 n1
n+1/2

⎤⎦
(149)

It can be easily verified that (149) satisfies the design conditions (74). Finally, in view of (70),
the discrete null space matrix for the E pair assumes the form

P(E)(qn, qn+1) =
⎡⎣ P1

int(q
1
n+1/2) 06×3

P2
int(q

2
n+1/2)P

2,(E)
ext (qn, qn+1)

⎤⎦ (150)
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where

P2
int(q

2
n+1/2)P

2,(E)
ext (qn, qn+1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I ( ̂�1 − �2)n+1/2 (m1
2)n+1/2 × (n1)n+1/2 (n1)n+1/2 × (m1

1)n+1/2 X2
n+1/2 × n1

n+1/2

0 −(d̂2
1)n+1/2 0 0 n1

n+1/2 × (d2
1)n+1/2

0 −(d̂2
2)n+1/2 0 0 n1

n+1/2 × (d2
2)n+1/2

0 −(d̂2
3)n+1/2 0 0 n1

n+1/2 × (d2
3)n+1/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(151)

Reparametrization of unknowns: In the present case, the configuration of the second body
with respect to the first one can be characterized by the incremental variables W(E) = (u2

1, u
2
2, �

2)

∈ R3. Here, �2 accounts for the incremental relative rotation which may be expressed via the
product of exponentials formula

(d2
I )n+1 = exp(�̂1) exp(�2(n̂1)n)(d2

I )n (152)

Enforcing the external constraints (138) at the end of the time step implies

�2
n+1 = �1

n+1 + X1
n+1 − X2

n+1 + ((u2
�)n + u2

�)(m
1
�)n+1 (153)

Accordingly, the mapping F2,(E)
qn

(�(E)) can be written in the form

q2
n+1 = F2,(E)

qn
(�(E)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1
n + u1

� + exp(�̂1)[X1
n − exp(�2(n̂1)n)X2

n + ((u2
�)n + u2

�)(m
1
�)n]

exp(�̂1) exp(�2(n̂1)n)(d2
1)n

exp(�̂1) exp(�2(n̂1)n)(d2
2)n

exp(�̂1) exp(�2(n̂1)n)(d2
3)n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(154)

5. NUMERICAL EXAMPLES

5.1. Steady precession of a gyro top

We consider the motion of a symmetrical top with a fixed point on its axis of symmetry
(Figure 7). The top can be modelled as spherical pair, where the first body is fixed in space
and the second body coincides with the top. Accordingly, with regard to Section 4.5.1, the
configuration of the top is characterized by q2 ∈ R12. In the following, we omit the superscript
2 such that, for example, the relevant coordinates of the top are given by

q = (�, {dI }) ∈ R12 (155)
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Figure 7. Symmetrical top.

The shape of the top is assumed to be a cone with height H = 0.1 and radius R = 0.05. The
centre of mass is located at L = 3

4H , so that the location of the spherical joint with respect to
the body frame is given by

X= �idi with [�i] = [0, 0, −L] (156)

The total mass of the top is M� = 1
3��R2H , the principal inertias with respect to the centre

of mass are

J1 = J2 = 3M�

80
(4R2 + H 2) and J3 = 3M�

10
R2 (157)

and the mass density is assumed to be � = 2700. Then the principal values of the Euler tensor
with respect to the centre of mass follow from

E = 1
2 (tr J)I − J (158)

such that, the mass matrix M ∈ R12×12 in (23) can be easily set up. Gravity is acting on the
top, such that the potential energy function is given by

V (q) = M�g�Te3 with g = 9.81 (159)

5.1.1. Constrained scheme. In addition to the n = 12 redundant coordinates, the constrained
scheme relies on m = 9 multipliers associated with mint = 6 internal constraints along with
mext = 3 external constraints. While the internal constraints are given by (24), the external
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constraints can be easily extracted from the treatment of the spherical pair in Section 4.5.1.
Accordingly, the external constraints assume the form

�ext(q) = � + X= 0 (160)

with corresponding 3 × 12 constraint Jacobian

Gext(q) = [I �1I �2I �3I] (161)

Obviously, the number of unknowns of the constrained scheme amounts to n + m = 21.

5.1.2. Reduced scheme. Application of the discrete null space method leads to the reduced
scheme with n − m = 3 unknowns. These unknowns correspond to the incremental rotation
vector � ∈ R3. In particular, in the present case, reparametrization (95) of the spherical pair
yields

qn+1 = Fqn(�) =

⎡⎢⎢⎢⎢⎢⎢⎣
− exp(̂�)Xn

exp(̂�)(d1)n

exp(̂�)(d2)n

exp(̂�)(d3)n

⎤⎥⎥⎥⎥⎥⎥⎦ (162)

The treatment of the spherical pair indicates that, in the present case, the independent generalized
velocities coincide with the angular velocity � ∈ R3 of the top. Furthermore, the present null
space matrix can be extracted from that of the spherical pair, Equation (86). Accordingly,

P(q) =

⎡⎢⎢⎢⎢⎢⎢⎣

X̂

−d̂1

−d̂2

−d̂3

⎤⎥⎥⎥⎥⎥⎥⎦ (163)

It further follows from the treatment of the S pair, that the discrete null space matrix for the
gyro top is given by (163), evaluated in the mid-point configuration qn+1/2.

5.1.3. Initial conditions. In order to provide an analytical reference solution, we consider the
case of precession with no nutation. Let � be the angle of nutation, �p the precession rate and
�s the spin rate. Specifically, as initial values we choose

� = �

3
and �p = 10 (164)

The condition for steady precession can be written as (see, for example, Reference
[26, Section 5.3])

�s = M�gL

M̃3�p
+ M̃1 − M̃3

M̃3
�p cos � (165)
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Here, M̃I are the principal values of the reduced mass matrix (8). In the present case, we get

M̃ = PTMP = J + M�(‖X‖2I − X⊗ X) (166)

or, in view of (156),

M̃ =
3∑

I=1
JI dI ⊗ dI + M�L2(d1 ⊗ d1 + d2 ⊗d2) (167)

Accordingly, the principal values of the reduced mass matrix to be inserted into (165) are
given by

M̃1 = J1 + M�L2 and M̃3 = J3 (168)

Note that the reduced mass matrix conforms to the well-known parallel-axis theorem. With
regard to the initial values (164) and (165), consistent initial values for the redundant coordinates
and the corresponding velocities can be calculated next. Accordingly, the initial configuration
is characterized by q ∈ R12 with

dI = exp(�ê1)eI and � =−X= Ld3 (169)

Consistent initial velocities v ∈ R12 can be calculated by employing the null space matrix (163).
Accordingly,

v = P(q)� (170)

with initial angular velocity vector given by

� = �pe3 + �sd3 (171)

To summarize, the analytical reference solution for the present motion of the gyro top cor-
responds to steady precession with constant angle of nutation � = �/3. As further reference
values, we compute the total energy E as well as the component eT

3 L of the angular momentum
vector L. In the present case, both quantities are first integrals of the motion. Making use of
the kinetic energy in form (7) along with the potential energy function (159), the total energy
can be written as

E(q, �) = 1
2�TM̃� + V (q) (172)

In addition to that, the angular momentum vector (with respect to the origin of the reference
frame {eI }) is given by

L = M̃� (173)

5.1.4. Numerical results
Convergence properties: To visualize the convergence properties of the present algorithm, we
compare the numerical results with the analytical reference solution. To this end, we consider
the motion of the centre of mass. In particular, Figures 8 and 9, depict the x, z coor-
dinates (�(t) = x(t)e1 + y(t)e2 + z(t)e3) of the mass centre versus time for �t = 0.05 and
0.01, respectively. Convergence towards the analytical solution can be easily observed. For
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Figure 8. Steady precession of a gyro top: comparison of analytical solution (xa(t), za(t)) and numerical
solution (x, z, �t = 0.05) for the motion of the centre of mass.

Figure 9. Steady precession of a gyro top: comparison of analytical solution (xa(t), za(t)) and numerical
solution (x, z, �t = 0.01) for the motion of the centre of mass.
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Table II. Comparison of the condition number of the iteration
matrix for the example ‘steady precession of a gyro top’.

�t Constrained scheme Reduced scheme

5 × 10−2 ≈ 1.6 × 104 ≈ 8
5 × 10−3 ≈ 1.6 × 107 ≈ 8
5 × 10−4 ≈ 1.6 × 1010 ≈ 8
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Figure 10. Steady precession of a gyro top: energy and components of
angular momentum vector (�t = 0.05).

�t = 0.001, practically no deviation of the numerical results from the analytical solution can
be observed anymore.

Conditioning: The condition number of the iteration matrix is depicted in Table II for both
the constrained scheme and the reduced scheme. Accordingly, the condition number of the
constrained scheme deteriorates with smaller time steps, whereas the reduced scheme remains
well-conditioned.

Conservation properties: As depicted in Figure 10, the first integrals of the motion are indeed
preserved by the present algorithm. That is, both the total energy and the 3-component of the
angular momentum vector are conserved quantities.

5.2. Cylindrical pair

We next investigate the free flight of a cylindrical pair (Figure 11, see also Figure 3). The
first body consists of a cylinder of length l1 = 30, radius r1 = 2 and mass M1

� = 4. The second

body is modelled as a hollow cylinder of length l2 = 6, outer radius r2
o = 3, inner radius r2

i = 2
and mass M2

� = 3. The principal values of the inertia tensor with respect to the centre of mass
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Figure 11. Initial configuration of the cylindrical pair.

are given by

[J 1
i ] = [304, 304, 8]

and

[J 2
i ] = [18.75, 18.75, 19.5]

respectively. The cylindrical joints are located in the centre of mass of each body. Consequently,
relative to the respective body frame, the location is characterized by

[�1
i ] = [0, 0, 0] and [�2

i ] = [0, 0, 0]
Furthermore, the unit vector (96) is specified by

[n1
i ] = [0, 0, 1]

The initial configuration of the cylindrical pair is characterized by �� = ��
i ei with

[�1
i ] = [0, 0, 0] and [�2

i ] = [0, 0, −11]
along with

d1
i = ei and d2

i = ei

Note that corresponding consistent initial relative coordinates are u2 =−11 and �2 = 0.
Consistent initial velocities can be computed by using the null space matrix (109), such that

v = P(C)�(C) (174)
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Figure 12. Cylindrical pair: snapshots of the motion at t = 0.1, 0.3, 0.7.

where the independent generalized velocities are specified by

�(C) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

v1
�

�1

u̇2

�̇
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

50

0

1

1.5

0

35.5

−100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(175)

No external forces are acting on the C pair such that the total energy and the vector of angular
momentum are first integrals of the motion. We further, remark that the implementation of the
constrained scheme leads to n+m(C) = 24 + 16 = 40 unknowns, whereas the application of the
discrete null space method, yields a reduction to n − m(C) = 8 unknowns (cf. Section 4).

To illustrate the motion of the C pair, Figure 12 shows some snapshots at t ∈ {0.1, 0.3, 0.7}.
Figure 13 confirms algorithmic conservation of the total energy, and the components Li of the
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Figure 13. Cylindrical pair: energy and components of angular momentum vector L = Liei (�t = 0.01).

Figure 14. Cylindrical pair: relative coordinates u2(t) and �2(t) (�t = 0.01).

angular momentum vector L = Liei . Furthermore, the evolution of the relative DOF u2(t) and
�2(t) is depicted in Figure 14.

From Table III, the condition number of the iteration matrix for the constrained scheme and
the reduced scheme can be compared. Accordingly, the reduced scheme is well conditioned for
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Table III. Comparison of the condition number of the
iteration matrix for the example ‘cylindrical pair’.

�t Constrained scheme Reduced scheme

1 × 10−2 ≈ 3.6 × 1011 ≈ 360
1 × 10−3 ≈ 3.6 × 1014 ≈ 358
1 × 10−4 ≈ 3.6 × 1017 ≈ 358

all time steps, whereas the condition number of the constrained scheme increases heavily for
decreasing time steps.

5.3. Planar pair

We next investigate the free flight of a planar pair (Figure 15, see also Figure 6). The E pair
consists of a parallelepiped of mass M1

� = 5 and side lengths l1
x = l1

y = 16, l1
z = 0.5, such that

the principal values of the inertia tensor, with respect to the centre of mass, are given by

[J 1
i ] =

[
5125

48
,

5125

48
,

640

3

]
The second body is modelled as a pyramid with mass M2

� = 2, side length of the square base

l2
x = l2

y = 2 and height l2
z = 3, leading to the principal values of the inertia tensor with respect

to the centre of mass

[J 2
i ] =

[
43

40
,

43

40
,

4

5

]
The location of the planar joint relative to the respective body frame is characterized by

[�1
i ] = [0, 0, 0.25] and [�2

i ] = [0, 0, −1]
Furthermore, the orthonormal frame needed for the description of the relative motion is
specified by

[n1
i ] = [0, 0, 1], [(m1

1)i] = [1, 0, 0], [(m1
2)i] = [0, 1, 0]

such that the pyramid is constrained to slide on the top surface of the parallelepiped. The
initial configuration of the planar pair is characterized by �� = ��

i ei with,

[�1
1] = [5, 5, 5] and [�2

i ] = [−2, −2, 6.25]
along with

d1
i = ei and d2

i = ei

Correspondingly, consistent initial values for the relative coordinates are given by

u2
1 =−7, u2

2 =−7, �2 = 0
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Figure 15. Initial configuration of the planar pair.

Consistent initial velocities are specified by using the null space matrix (145), so that

v = P(E)�(E) (176)

with independent generalized velocities

�(E) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
�

�1

u̇2
1

u̇2
2

�̇
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−20

−20

10

150

−120

60

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(177)

Note that, for clearness of exposition, the initial velocity of the mass centre of the first body
has been set to zero (v1

� = 0). Snapshots of the planar pair at consecutive instants illustrate the
simulated motion in Figure 16. Since no external forces are acting on the planar pair, both
the energy and the vector of angular momentum are conserved quantities. The corresponding
algorithmic conservation properties are confirmed in Figure 17. Furthermore, Figure 18 depicts
the evolution of the relative coordinates specifying the configuration of the second body relative
to the first one.

Table IV again verifies that the condition number of the iteration matrix, can be significantly
improved by applying the discrete null space method. In this connection, we recall that the
implementation of the constrained scheme is based on n + m(E) = 24 + 15 = 39 unknowns,
whereas the application of the discrete null space method yields a reduction to n − m(E) = 9
unknowns (cf. Section 4).

5.4. Kinematic chains

The previous treatment of kinematic pairs can be directly extended to kinematic chains. The
extension to kinematic chains is outlined next for both open and closed loop systems. Eventually,
we present a numerical example dealing with a six-body linkage.
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Figure 16. Planar pair: snapshots of the motion at t ∈ {0.02, 0.04, 0.05, 0.06, 0.07, 0.08}.

5.4.1. Open kinematic chain. In preparation for the numerical example, we first outline the
treatment of a serial manipulator consisting of six rigid bodies interconnected by revolute
joints (Figure 19). Body 0 is fixed in space such that, the present rigid body formulation
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Figure 17. Planar pair: energy and components of angular momentum vector L = Liei (�t = 0.01).

Figure 18. Planar pair: relative coordinates u2
1(t), u2

2(t) and �2(t) (�t = 0.001).

implies n = 5 × 12 = 60 redundant coordinates along with m = mint+mext constraints. Each rigid
link is based on six internal constraints of form (24). Furthermore, each revolute joint yields
five external constraints of form (119). Accordingly, in total there are m = 5 × 6 + 5 × 5 = 55
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Table IV. Comparison of the condition number of the
iteration matrix for the example ‘planar pair’.

�t Constrained scheme Reduced scheme

1 × 10−2 ≈ 4.8 × 1010 ≈ 7.3 × 102

1 × 10−3 ≈ 4.6 × 1013 ≈ 8.0 × 102

1 × 10−4 ≈ 4.6 × 1016 ≈ 8.0 × 102

Figure 19. Schematic illustration of the open kinematic chain.

constraints associated with the kinematic chain under consideration. This corresponds to
n − m = 5 DOF.

Null space matrix: The treatment of the revolute pair in Section 4.5.3 can now be easily
generalized to the kinematic chain at hand. In view of (122), the relationship between the twist
of the ith body and the (i − 1)st body (Figure 20) can be written as

ti = Pi,(R)
ext

⎡⎣ti−1

�̇
i

⎤⎦ (178)

Partitioning Pi,(R)
ext = [Pi,a

ext, Pi,b
ext], with Pi,a

ext ∈ R6×6 and Pi,b
ext ∈ R6 × 1, Equation (178) may be

rewritten as

ti = Pi,a
extt

i−1 + Pi,b
ext�̇

i
(179)

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 67:499–552



544 P. BETSCH AND S. LEYENDECKER

Figure 20. Revolute pair in a simple kinematic chain.

where

Pi,a
ext =

[
I ̂Xi,i − Xi−1,i

0 I

]
and Pi,b

ext =
⎡⎣Xi,i × ni−1

ni−1

⎤⎦ (180)

Recursive application of formula (179) yields

ti =
i∑

k=1
Pi,k �̇

k
(181)

with

Pi,k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
k+1∏
l=i

Pl,a
ext

)
Pk,b

ext for i>k

Pk,b
ext for i = k

0 for i<k

(182)

for i, k = 1, . . . , 5. Accordingly, the twist of the simple open kinematic chain under investigation
can now be written as

t = Po
ext�̇ (183)
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or, more explicitly,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1

t2

t3

t4

t5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1,1 0 0 0 0

P2,1 P2,2 0 0 0

P3,1 P3,2 P3,3 0 0

P4,1 P4,2 P4,3 P4,4 0

P5,1 P5,2 P5,3 P5,4 P5,5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̇
1

�̇
2

�̇
3

�̇
4

�̇
5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(184)

Proceeding along the lines of Section 4, we arrive at the 60 × 5 null space matrix pertaining
to the open chain

Po = PintPo
ext (185)

where

Pint =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P1
int 0 · · · 0

0 P2
int · · · 0

...
...

. . .
...

0 0 . . . P5
int

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(186)

and Pi
int is given by (55). It is obvious from the above treatment of the revolute pair that the

discrete null space matrix pertaining to the open chain is given by

Po(qn, qn+1) = Pint(qn+1/2)Po
ext(qn+1/2) (187)

Reparametrization of unknowns: Similar to reparametrization (126) for the revolute pair, the
reparametrization for the open chain is based on a product of exponentials formula which
characterizes the incremental rotational motion in terms of incremental joint angles �1 · · · �5.
Accordingly, the director frame of the ith body at the end of a time step is given by

(di
I )n+1 =

i∏
k=1

exp(�k(n̂k−1)n)(di
I )n (188)

for i = 1, . . . , 5. In addition to (188), the placement of the centre of mass of the ith body with
respect to G0 (Figure 19) is given by

�i
n+1 =

i∑
l=1

((Xl−1, l)n+1 − (Xl, l)n+1) (189)

for i = 1, . . . , 5.
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5.4.2. Closed kinematic chain. We next consider, a closed kinematic chain consisting of six
rigid bodies interconnected by revolute joints as shown in Figure 21. Our treatment of the
present closed-loop system makes use of the approach outlined in Section 4.4 of Part I. To
this end, we regard the open chain in Figure 19 as open-loop system associated with the
closed-loop system at hand. The associated open-loop system is now subjected to additional
loop-closure conditions �̃(q) = 0. In particular, similar to (119), we get

�̃(q) =

⎡⎢⎢⎢⎣
�5 − �0 + X5,6 − X0,6

(n5)Td0
1 − �5

1

(n5)Td0
2 − �5

2

⎤⎥⎥⎥⎦ (190)

The discrete null space matrix for the closed chain can be calculated by applying the 2-step pro-
cedure outlined in Appendix C of Part I. Note that this approach essentially requires the discrete
null space matrix of the associated open-loop system (187), together with reparametrizations
(188), (189) and the closure conditions (190).

Numerical example: The numerical example deals with a closed kinematic chain given by the
six-body linkage depicted in Figure 22. We refer to Reference [27] for a detailed investigation
of the six-body linkage under consideration. There, it is shown that only four of the five
loop-closure constraints (190) are independent. Thus, provided that body 0 is fixed in space,
the six-body linkage has 1 DOF.

Figure 21. Schematic illustration of the closed kinematic chain.
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Figure 22. Initial configuration of the six-body linkage.

The initial configuration of the six-body linkage forms a cube of side length L (Figure 22).
Bodies 0, 2 and 4 are identical, and bodies 1, 3 and 5 are identical. Furthermore, body 1 is
a mirror image of body 0. Accordingly, it suffices to provide the details of body 0. Body 0
has density � = 1000, length L = 0.1 and angle � = 0.16�. Setting a = tan �, the mass of body
0 is given by M� = �a2L3/6. In the initial configuration the centre of mass of body 0 with
respect to the inertial frame is given by

� = �iei with [�i] =

⎡⎢⎢⎣
aL/4

L/2

−aL/4

⎤⎥⎥⎦
Furthermore, the inertia tensor of body 0, with respect to its centre of mass in the initial
configuration can be written as

J = Jij ei ⊗ ej

with

[Jij ] = �L5a2

40

⎡⎢⎢⎢⎣
1/3 + a2/4 a/6 −a2/12

a/6 a2/2 a/6

−a2/12 a/6 1/3 + a2/4

⎤⎥⎥⎥⎦
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Figure 23. Six-body linkage: energy and components of angular momentum vector L = Liei (�t = 0.01).

To provide consistent initial velocities, we make use of the symmetry relationships �1 = �3 = �5

and �2 = �4, along with �2(�1) = arcsin (sin �1/(1 − sin �1)) (see Reference [27]). Thus, the
generalized velocities �̇ ∈ R5 of the associated open-loop system, see Equation (183), can be

expressed as �̇ = Poc
ext�̇

1
, with the 5 × 1 matrix

Poc
ext =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

d�2/d�1

1

d�2/d�1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(191)

Altogether, the 60 × 1 null space matrix of the closed-loop system at hand can be written in
the form

Pc = PintPo
extP

oc
ext (192)

Accordingly, consistent initial velocities v ∈ R60 follow from v = Pc�̇
1
. In the numerical example

�̇
1 = 30 has been chosen. Gravity is acting on the system with g = 9.81.

Figure 24 gives an impression of the motion by showing snapshots at consecutive instances.
Algorithmic conservation of the total energy for the present conservative problem is corroborated
in Figure 23. The evolution of the coordinates �1(t) and �2(t) is depicted in Figure 25.
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Figure 24. Six-body linkage: snapshots of the motion at t ∈ {0.02, 0.04, 0.08, 0.09, 0.13, 0.26}.
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Figure 25. Six-body linkage: relative coordinates �1(t) and �2(t) (�t = 0.01).

Table V. Comparison of the condition number of the iteration
matrix for the example ‘six-body linkage’ (t = 0.04).

�t Constrained scheme Reduced scheme

1 × 10−2 ≈ 1.6 × 105 ≈ 19
1 × 10−3 ≈ 1.5 × 108 ≈ 10
1 × 10−4 ≈ 1.5 × 1011 ≈ 58

Concerning the conditioning issue, the advantageous properties of the advocated discrete null
space method are obvious in view of Table V.

6. CONCLUSIONS

We have shown that the constrained formulation of rigid bodies is well-suited for the conserving
discretization of multibody dynamics. In particular, the 12 redundant coordinates used for the
description of each individual rigid body are supplemented with six internal constraints. In
addition to that, external constraints serve the purpose of specifying a particular multibody
system.

Application of the discrete null space method leads to the elimination of the constraint forces
in the discrete setting, while algorithmic conservation properties and constraint fulfillment are
retained. In this connection, a discrete null space matrix needs to be provided. We have shown
that discrete null space matrices pertaining to specific lower kinematic pairs can be set up
systematically. The extension to multibody systems can be performed in a straightforward way.
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Corresponding to the division into internal and external constraints, the null space matrix
pertaining to a multibody system can be decomposed in a multiplicative manner.

P = PintPext

Here Pint can be connected to the internal constraints, and always assumes the form of a block
diagonal matrix, see, for example, Equations (54) or (186). On the other hand, Pext can be
linked to the external constraints, and connects the independent velocities with the twist of the
system, see, for example, Equations (59) and (184).
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